Search results for: high performance working systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36032

Search results for: high performance working systems

35612 Maintenance Performance Measurement Derived Optimization: A Case Study

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu

Abstract:

Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.

Keywords: maintenance, vendor-managed, decision support, performance, optimization

Procedia PDF Downloads 122
35611 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: autonomous strategies, distributed database systems, high priority, query optimization

Procedia PDF Downloads 518
35610 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid

Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh

Abstract:

In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.

Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance

Procedia PDF Downloads 466
35609 Deflection Effect on Mirror for Space Applications

Authors: Maamar Fatouma

Abstract:

Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.

Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria

Procedia PDF Downloads 85
35608 Operational Excellence Performance in Pharmaceutical Quality Control Labs: An Empirical Investigation of the Effectiveness and Efficiency Relation

Authors: Stephan Koehler, Thomas Friedli

Abstract:

Performance measurement has evolved over time from a unidimensional short-term efficiency focused approach into a balanced multidimensional approach. Today, integrated performance measurement frameworks are often used to avoid local optimization and to encourage continuous improvement of an organization. In literature, the multidimensional characteristic of performance measurement is often described by competitive priorities. At the same time, on the highest abstraction level an effectiveness and efficiency dimension of performance measurement can be distinguished. This paper aims at a better understanding of the composition of effectiveness and efficiency and their relation in pharmaceutical quality control labs. The research comprises a lab-specific operationalization of effectiveness and efficiency and examines how the two dimensions are interlinked. The basis for the analysis represents a database of the University of St. Gallen including a divers set of 40 different pharmaceutical quality control labs. The research provides empirical evidence that labs with a high effectiveness also accompany a high efficiency. Lab effectiveness explains 29.5 % of the variance in lab efficiency. In addition, labs with an above median operational excellence performance have a statistically significantly higher lab effectiveness and lab efficiency compared to the below median performing labs.

Keywords: empirical study, operational excellence, performance measurement, pharmaceutical quality control lab

Procedia PDF Downloads 155
35607 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 251
35606 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed

Authors: Zdzislaw Kaminski, Zbigniew Czyz

Abstract:

The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.

Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel

Procedia PDF Downloads 251
35605 Reaching New Levels: Using Systems Thinking to Analyse a Major Incident Investigation

Authors: Matthew J. I. Woolley, Gemma J. M. Read, Paul M. Salmon, Natassia Goode

Abstract:

The significance of high consequence, workplace failures within construction continues to resonate with a combined average of 12 fatal incidents occurring daily throughout Australia, the United Kingdom, and the United States. Within the Australian construction domain, more than 35 serious, compensable injury incidents are reported daily. These alarming figures, in conjunction with the continued occurrence of fatal and serious, occupational injury incidents globally suggest existing approaches to incident analysis may not be achieving required injury prevention outcomes. One reason may be that, incident analysis methods used in construction have not kept pace with advances in the field of safety science and are not uncovering the full range system-wide contributory factors that are required to achieve optimal levels of construction safety performance. Another reason underpinning this global issue may also be the absence of information surrounding the construction operating and project delivery system. For example, it is not clear who shares the responsibility for construction safety in different contexts. To respond to this issue, to the author’s best knowledge, a first of its kind, control structure model of the construction industry is presented and then used to analyse a fatal construction incident. The model was developed by applying and extending the Systems Theoretic and Incident Model and Process method to hierarchically represent the actors, constraints, feedback mechanisms, and relationships that are involved in managing construction safety performance. The Causal Analysis based on Systems Theory (CAST) method was then used to identify the control and feedback failures involved in the fatal incident. The conclusions from the Coronial investigation into the event are compared with the findings stemming from the CAST analysis. The CAST analysis highlighted additional issues across the construction system that were not identified in the coroner’s recommendations, suggested there is a potential benefit in applying a systems theory approach to incident analysis in construction. The findings demonstrate the utility applying systems theory-based methods to the analysis of construction incidents. Specifically, this study shows the utility of the construction control structure and the potential benefits for project leaders, construction entities, regulators, and construction clients in controlling construction performance.

Keywords: construction project management, construction performance, incident analysis, systems thinking

Procedia PDF Downloads 124
35604 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: channel estimation, OFDM, pilot-assist, VLC

Procedia PDF Downloads 175
35603 Total Quality Management in Algerian Manufacturing

Authors: Nadia Fatima Zahra Malki

Abstract:

The aim of the study is to show the role of total Quality Management on firm performance, research relied on the views of a sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis's main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was that there is a relationship between the Principles of TQM and Firm Performance.

Keywords: total quality management, competitive advantage, companies, objectives

Procedia PDF Downloads 58
35602 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu

Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran

Abstract:

Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.

Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu

Procedia PDF Downloads 415
35601 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 87
35600 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 237
35599 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 146
35598 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System

Authors: Ariba Siddiqui, Amber Khan

Abstract:

The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.

Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer

Procedia PDF Downloads 172
35597 Design, Fabrication, and Experimental Validation of a Warm Bulge Test System

Authors: Emine Feyza Şükür, Mevlüt Türköz, Murat Dilmeç, Hüseyin Selçuk Halkacı

Abstract:

In this study, a warm bulge test system was designed, built and experimentally validated to perform warm bulge tests with all necessary systems. In addition, performance of each sub-system is validated through repeated production and/or test runs as well as through part quality measurements. Validation and performance tests were performed to characterize the repeatability of the system. As a result of these tests, the desired temperature distribution on the sheet metal was obtained by the heating systems and the good repeatability of the bulge tests was obtained. Consequently, this study is expected to provide other researchers and manufacturer with a set of design and process guidelines to develop similar systems.

Keywords: design, test unit, warm bulge test unit, validation test

Procedia PDF Downloads 485
35596 Improved Performance of Cooperative Scheme in the Cellular and Broadcasting System

Authors: Hyun-Jee Yang, Bit-Na Kwon, Yong-Jun Kim, Hyoung-Kyu Song

Abstract:

In the cooperative transmission scheme, both the cellular system and broadcasting system are composed. Two cellular base stations (CBSs) communicating with a user in the cell edge use cooperative transmission scheme in the conventional scheme. In the case that the distance between two CBSs and the user is distant, the conventional scheme does not guarantee the quality of the communication because the channel condition is bad. Therefore, if the distance between CBSs and a user is distant, the performance of the conventional scheme is decreased. Also, the bad channel condition has bad effects on the performance. The proposed scheme uses two relays to communicate well with CBSs when the channel condition between CBSs and the user is poor. Using the relay in the high attenuation environment can obtain both advantages of the high bit error rate (BER) and throughput performance.

Keywords: cooperative communications, diversity gain, OFDM, interworking system

Procedia PDF Downloads 571
35595 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures

Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini

Abstract:

In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.

Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption

Procedia PDF Downloads 180
35594 Functional Performance Needs of Individuals with Intellectual and Developmental Disabilities

Authors: Noor Taleb Ismael, Areej Abd Al Kareem Al Titi, Ala'a Fayez Jaber

Abstract:

Objectives: To investigate self-perceived functional performance among adults with IDD who are Jordanian residential care and rehabilitation centers residents. Also, to investigate their functional abilities (i.e., motor, and cognitive). In addition, to determine the motor and cognitive predictors of their functional performance. Methods: The study utilized a cross-sectional descriptive design; the sample included 180 individuals with IDD (90 males and 90 females) aged 18 to 75 years. The inclusion criteria encompassed: 1) Adults with a confirmed IDD by their physician’s professional and 2) residents in Jordanian Residential Care and Rehabilitation Centers affiliated with the Jordanian Ministry of Social Development. The exclusion criteria were: 1) bedridden or totally dependent on their care providers; 2) who had an accident or acquired neurological conditions. Researchers conducted semi-structured interviews to complete the outcome measures that include the Canadian Occupational Performance Measure (COPM), the Functional Independence Measure (FIM), the Montreal Cognitive Assessment (MoCA), the Mini-Mental Status Examination (MMSE), and the sociodemographic questionnaire. Data analyses consisted of descriptive statistics, analysis of frequencies, correlation, and regression analyses. Result: Individuals with IDD showed low functional performance in all daily life areas, including self-care, productivity, and leisure; there was severe cognitive impairment and poor independence and functional performance. (COPM Performance M= 1.433, SD±.57021, COPM Satisfaction M= 1.31, SD±.54, FIM M= 3.673, SD± 1.7918). Two predictive models were validated for the COPM performance and FIM total scores. First, significant predictors of high self-perceived functional performance on COPM were high scores on FIM Motor sub scores, FIM cognitive sub scores, young age, and having a high school educational level (R2=0.603, p=0.012). Second, significant predictors of high functional capacity on FIM were a high score on the COPM performance subscale, a high MMSE score, and having a cerebral palsy (CP) diagnosis (R2=0.671, p<0.001). Conclusions: Evaluating functional performance and associated factors is important in rehabilitation to provide better services and improve health and QoL for individuals with IDD. This study suggested conducting future studies targeting integrated individuals with IDD who live with their families in the communities.

Keywords: functional performance, intellectual and developmental disabilty, cognitive abilities, motor abilities

Procedia PDF Downloads 45
35593 Performance Management in Serbian Banks: Balanced Scorecard Approach

Authors: Nela Milosevic, Sladjana Barjaktarovic Rakocevic, Sladjana Benkovic, Nemanja Milanovic

Abstract:

Nowadays, performance measurement systems play a key role in evaluating the strategic performances of an organization. On the other hand, there has been a shift towards the Balanced Scorecard (BSC), which has been recognized as a valuable managerial approach. The main goal of this paper is to analyze the main performances of Serbian banks measured at the branches level, through the usage of the Balanced Scorecard framework. Although an extensive number of practitioners have an interest in the Balanced Scorecard approach, little empirical research has been conducted on the implementation of its concept in the service sector like banks, especially within developing countries. From the beginning of August till the end of September 2015, authors have been conducting in-depth interviews among a number of experts from the most successful banks in Serbia. The results show that the non-financial measures, especially, customer oriented indicators and product/ service oriented indicators, seem to be very important factors for improving not only the financial situation within the bank, but also overall business performances. Additionally, the findings prove that there is the cause-effect relationship between non-financial and financial dimensions of the Balanced Scorecard. Having in mind that the banks are still using outdated performance evaluation systems, such as annual, quarterly and monthly reports, we hope that this paper will contribute to the knowledge of how banks in Serbia may apply the Balanced Scorecard approach to evaluate their performance on the most efficient and effective way.

Keywords: balanced scorecard approach, bank management, performance measurement systems, strategic performances

Procedia PDF Downloads 336
35592 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 117
35591 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler.

Keywords: liquid silicone rubber, nano-composite, HVDC insulation, cable joints

Procedia PDF Downloads 459
35590 Implementation of Project-Based Learning with Peer Assessment in Large Classes under Consideration of Faculty’s Scare Resources

Authors: Margit Kastner

Abstract:

To overcome the negative consequences associated with large class sizes and to support students in developing the necessary competences (e.g., critical thinking, problem-solving, or team-work skills) a marketing course has been redesigned by implementing project-based learning with peer assessment (PBL&PA). This means that students can voluntarily take advantage of this supplementary offer and explore -in addition to attending the lecture where clicker questions are asked- a real-world problem, find a solution, and assess the results of peers while working in small collaborative groups. In order to handle this with little further effort, the process is technically supported by the university’s e-learning system in such a way that students upload their solution in form of an assignment which is then automatically distributed to peer groups who have to assess the work of three other groups. Finally, students’ work is graded automatically considering both, students’ contribution to the project and the conformity of the peer assessment. The purpose of this study is to evaluate students’ perception of PBL&PA using an online-questionnaire to collect the data. More specifically, it aims to discover students’ motivations for (not) working on a project and the benefits and problems students encounter. In addition to the survey, students’ performance was analyzed by comparing the final grades of those who participated in PBL&PA with those who did not participate. Among the 260 students who filled out the questionnaire, 47% participated in PBL&PA. Besides extrinsic motivations (bonus credits), students’ participation was often motivated by learning and social benefits. Reasons for not working on a project were connected to students’ organization and management of their studies (e.g., time constraints, no/wrong information) and teamwork concerns (e.g., missing engagement of peers, prior negative experiences). In addition, high workload and insufficient extrinsic motivation (bonus credits) were mentioned. With regards to benefits and problems students encountered during the project, students provided more positive than negative comments. Positive aspects most often stated were learning and social benefits while negative ones were mainly attached to the technical implementation. Interestingly, bonus credits were hardly named as a positive aspect meaning that intrinsic motivations have become more important when working on the project. Team aspects generated mixed feelings. In addition, students who voluntarily participated in PBL&PA were, in general, more active and utilized further course offers such as clicker questions. Examining students’ performance at the final exam revealed that students without participating in any of the offered active learning tasks performed poorest in the exam while students who used all activities were best. In conclusion, the goals of the implementation were met in terms of students’ perceived benefits and the positive impact on students’ exam performance. Since the comparison of the automatic grading with faculty grading showed valid results, it is possible to rely only on automatic grading in the future. That way, the additional workload for faculty will be within limits. Thus, the implementation of project-based learning with peer assessment can be recommended for large classes.

Keywords: automated grading, large classes, peer assessment, project-based learning

Procedia PDF Downloads 159
35589 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation

Authors: Kyoung Hoon Kim

Abstract:

A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.

Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance

Procedia PDF Downloads 298
35588 Cognitive Deficits and Association with Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder in 22q11.2 Deletion Syndrome

Authors: Sinead Morrison, Ann Swillen, Therese Van Amelsvoort, Samuel Chawner, Elfi Vergaelen, Michael Owen, Marianne Van Den Bree

Abstract:

22q11.2 Deletion Syndrome (22q11.2DS) is caused by the deletion of approximately 60 genes on chromosome 22 and is associated with high rates of neurodevelopmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). The presentation of these disorders in 22q11.2DS is reported to be comparable to idiopathic forms and therefore presents a valuable model for understanding mechanisms of neurodevelopmental disorders. Cognitive deficits are thought to be a core feature of neurodevelopmental disorders, and possibly manifest in behavioural and emotional problems. There have been mixed findings in 22q11.2DS on whether the presence of ADHD or ASD is associated with greater cognitive deficits. Furthermore, the influence of developmental stage has never been taken into account. The aim was therefore to examine whether the presence of ADHD or ASD was associated with cognitive deficits in childhood and/or adolescence in 22q11.2DS. We conducted the largest study to date of this kind in 22q11.2DS. The same battery of tasks measuring processing speed, attention and spatial working memory were completed by 135 participants with 22q11.2DS. Wechsler IQ tests were completed, yielding Full Scale (FSIQ), Verbal (VIQ) and Performance IQ (PIQ). Age-standardised difference scores were produced for each participant. Developmental stages were defined as children (6-10 years) and adolescents (10-18 years). ADHD diagnosis was ascertained from a semi-structured interview with a parent. ASD status was ascertained from a questionnaire completed by a parent. Interaction and main effects of cognitive performance of those with or without a diagnosis of ADHD or ASD in childhood or adolescence were conducted with 2x2 ANOVA. Significant interactions were followed up with t-tests of simple effects. Adolescents with ASD displayed greater deficits in all measures (processing speed, p = 0.022; sustained attention, p = 0.016; working memory, p = 0.006) than adolescents without ASD; there was no difference between children with and without ASD. There were no significant differences on IQ measures. Both children and adolescents with ADHD displayed greater deficits on sustained attention (p = 0.002) than those without ADHD. There were no significant differences on any other measures for ADHD. Magnitude of cognitive deficit in individuals with 22q11.2DS varied by cognitive domain, developmental stage and presence of neurodevelopmental disorder. Adolescents with 22q11.2DS and ASD showed greater deficits on all measures, which suggests there may be a sensitive period in childhood to acquire these domains, or reflect increasing social and academic demands in adolescence. The finding of poorer sustained attention in children and adolescents with ADHD supports previous research and suggests a specific deficit which can be separated from processing speed and working memory. This research provides unique insights into the association of ASD and ADHD with cognitive deficits in a group at high genomic risk of neurodevelopmental disorders.

Keywords: 22q11.2 deletion syndrome, attention deficit hyperactivity disorder, autism spectrum disorder, cognitive development

Procedia PDF Downloads 145
35587 Is Socio-Economic Characteristic is Associated with Health-Related Quality of Life among Elderly: Evidence from SAGE Data in India

Authors: Mili Dutta, Lokender Prashad

Abstract:

Introduction: Population ageing is a phenomenon that can be observed around the globe. The health-related quality of life (HRQOL) is a measurement of health status of an individual, and it describes the effect of physical and mental health disorders on the well-being of a person. The present study is aimed to describe the influence of socio-economic characteristics of elderly on their health-related quality of life in India. Methods: EQ-5D instrument and population-based EQ-5D index score has been measured to access the HRQOL among elderly. Present study utilized the Study on Global Ageing and Adult Health (SAGE) data which was conducted in 2007 in India. Multiple Logistic Regression model and Multivariate Linear Regression model has been employed. Result: In the present study, it was found that the female are more likely to have problems in mobility (OR=1.41, 95% Cl: 1.14 to 1.74), self-care (OR=1.26, 95% Cl: 1.01 to 1.56) and pain or discomfort (OR=1.50, 95% Cl: 1.16 to 1.94). Elderly residing in rural area are more likely to have problems in pain/discomfort (OR=1.28, 95% Cl: 1.01 to 1.62). More older and non-working elderly are more likely whereas higher educated and highest wealth quintile elderly are less likely to have problems in all the dimensions of EQ-5D viz. mobility, self-care, usual activity, pain/discomfort and anxiety/depression. The present study has also shown that oldest old people, residing in rural area and currently not working elderly are more likely to report low EQ-5D index score whereas elderly with high education level and high wealth quintile are more likely to report high EQ-5D index score than their counterparts. Conclusion: The present study has found EQ-5D instrument as the valid measure for assessing the HRQOL of elderly in India. The study indicates socio-economic characteristics of elderly such as female, more older people, residing in rural area, non-educated, poor and currently non-working as the major risk groups of having poor HRQOL in India. Findings of the study will be helpful for the programmes and policy makers, researchers, academician and social workers who are working in the field of ageing.

Keywords: ageing, HRQOL, India, EQ-5D, SAGE, socio-economic characteristics

Procedia PDF Downloads 399
35586 Perception of Indoor Environmental Qualities in Residential Buildings: A Quantitative Case Survey for Turkey and Iran

Authors: Majid Bahramian, Kaan Yetilmezsoy

Abstract:

Environmental performance of residential buildings been a hotspot for the research community, however, the indoor environmental quality significantly overlooked in the literature. The paper is motivated by the understanding of the occupants from the indoor environmental qualities and seeks to find the satisfaction level in two high-rise green-certified residential buildings. Views of more than 250 respondents in each building were solicited on 15 Indoor Environmental Qualities (IEQ) parameters. Findings suggest that occupants are generally satisfied with five critical aspects of IEQ, but some unsatisfaction exists during operation phase. The results also indicate that the green build certification systems for new buildings have some deficiencies which affect the actual environmental performance of green buildings during operation. Some reasons were suggested by the occupants of which the design-focus construction and lack of monitoring after certification were the most critical factors. Among the crucial criteria for environmental performance assessment of green buildings, energy saving, reduction of Greenhouse Gases (GHG) emissions, environmental impacts on neighborhood area, waste reduction and IEQs, were the most critical factors dominating the performance, in a descending order. This study provides valuable information on the performance of IEQ parameters of green building and gives a deeper understanding for stakeholders and companies involved in construction sector with the relevant feedback for their decision-making on current and future projects.

Keywords: indoor environmental qualities, green buildings, occupant satisfaction, environmental performance

Procedia PDF Downloads 82
35585 Corporate Governance and Firm Performance: An Empirical Study from Pakistan

Authors: Mohammed Nishat, Ahmad Ghazali

Abstract:

This study empirically inspects the corporate governance and firm performance, and attempts to analyze the corporate governance and control related variables which are hypothesized to have effect on firm’s performance. Current study attempts to assess the mechanism and efficiency of corporate governance to achieve high level performance for the listed firms on the Karachi Stock Exchange (KSE) for the period 2005 to 2008. To evaluate the firm performance level this study investigate the firm performance using three measures; Return on assets (ROA), Return on Equity (ROE) and Tobin’s Q. To check the link between firm performances with the corporate governance three categories of corporate governance variables are tested which includes governance, ownership and control related variables. Fixed effect regression model is used to examine the relation among governance and corporate performance for 267 KSE listed Pakistani firms. The result shows that governance related variables like block shareholding by individuals have positive impact on firm performance. When chief executive officer is also the board chairperson then it is observed that performance of firm is adversely affected. Also negative relationship is found between share held by insiders and performance of firm. Leverage has negative influence on the firm performance and size of firm is positively related with performance of the firm.

Keywords: corporate governance, agency cost, KSE, ROA, Tobin’s Q

Procedia PDF Downloads 405
35584 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 99
35583 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems

Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga

Abstract:

In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.  

Keywords: car’s air–conditioning, microstructure, numerical modelling, welding

Procedia PDF Downloads 404