Search results for: feature learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8390

Search results for: feature learning

7970 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 96
7969 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 164
7968 Mobile Phones and Language Learning: A Qualitative Meta-Analysis of Studies Published between 2008 and 2012 in the Proceedings of the International Conference on Mobile Learning

Authors: Lucia Silveira Alda

Abstract:

This research aims to analyze critically a set of studies published in the Proceedings of the International Conference on Mobile Learning of IADIS, from 2008 until 2012, which addresses the issue of foreign language learning mediated by mobile phones. The theoretical review of this study is based on the Vygotskian assumptions about tools and mediated learning and the concepts of mobile learning, CALL and MALL. In addition, the diffusion rates of the mobile phone and especially its potential are considered. Through systematic review and meta-analysis, this research intended to identify similarities and differences between the identified characteristics in the studies on the subject of language learning and mobile phone. From the analysis of the results, this study verifies that the mobile phone stands out for its mobility and portability. Furthermore, this device presented positive aspects towards student motivation in language learning. The studies were favorable to mobile phone use for learning. It was also found that the challenges in using this tool are not technical, but didactic and methodological, including the need to reflect on practical proposals. The findings of this study may direct further research in the area of language learning mediated by mobile phones.

Keywords: language learning, mobile learning, mobile phones, technology

Procedia PDF Downloads 283
7967 The Effect of Classroom Atmospherics on Second Language Learning

Authors: Sresha Yadav, Ishwar Kumar

Abstract:

Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.

Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning

Procedia PDF Downloads 458
7966 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: evolving learning, knowledge extraction, knowledge graph, text mining

Procedia PDF Downloads 458
7965 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 130
7964 Impact of VARK Learning Model at Tertiary Level Education

Authors: Munazza A. Mirza, Khawar Khurshid

Abstract:

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

Keywords: learning style, VARK, sensory preferences, identification model, didactic practices

Procedia PDF Downloads 281
7963 Integrating Student Engagement Activities into the Learning Process

Authors: Yingjin Cui, Xue Bai, Serena Reese

Abstract:

Student engagement and student interest during class instruction are important conditions for active learning. Engagement, which has an important relationship with learning motivation, influences students' levels of persistence in overcoming challenges. Lack of student engagement and absence from face-to-face lectures and tutorials, in turn, can lead to poor academic performance. However, keeping students motivated and engaged in the learning process in different instructional modes poses a significant challenge; students can easily become discouraged from attending lectures and tutorials across both online and face-to-face settings. Many factors impact students’ engagement in the learning process. If you want to keep students focused on learning, you have to invite them into the process of helping themselves by providing an active learning environment. Active learning is an excellent technique for enhancing student engagement and participation in the learning process because it provides means to motivate the student to engage themselves in the learning process through reflection, analyzing, applying, and synthesizing the material they learn during class. In this study, we discussed how to create an active learning class (both face-to-face and synchronous online) through engagement activities, including reflection, collaboration, screen messages, open poll, tournament, and transferring editing roles. These activities will provide an uncommon interactive learning environment that can result in improved learning outcomes. To evaluate the effectiveness of those engagement activities in the learning process, an experimental group and a control group will be explored in the study.

Keywords: active learning, academic performance, engagement activities, learning motivation

Procedia PDF Downloads 150
7962 Heightening Pre-Service Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology: Pre-Service Science Teachers’ Perspective

Authors: Abiodun Ezekiel Adesina, Ijeoma Ginikanwa Akubugwo

Abstract:

Information and Communication Technology, ICT can heighten pre-service teachers’ attitudes toward learning and metacognitive learning; however, there is a dearth of literature on the perception of the pre-service teachers on heightening their attitude toward learning and metacognitive learning. Thus, this study investigates the perception of pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT. Two research questions and four hypotheses guided the research. A mixed methods research was adopted for the study in concurrent triangulation type of integrating qualitative and quantitative approaches to the study. The cluster random sampling technique was adopted to select 250 pre-service science teachers in Oyo township. Two self-constructed instruments: Heightening Pre-service Science Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology Scale (HPALMIS, r=.73), and an unstructured interview were used for data collection. Thematic analysis, frequency counts and percentages, t-tests, and analysis of variance were used for data analysis. The perception level of the pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT is above average, with the majority perceiving that ICT can enhance their thinking about their learning. The perception was significant (mean=92.68, SD=10.86, df=249, t=134.91, p<.05). The perception was significantly differentiated by gender (t=2.10, df= 248, p<.05) in favour of the female pre-service teachers and based on the first time of ICTs use (F(5,244)= 9.586, p<.05). Lecturers of science and science related courses should therefore imbibe the use of ICTs in heightening pre-service teachers’ attitude towards learning and metacognitive learning. Government should organize workshops, seminars, lectures, and symposia along with professional bodies for the science education lecturers to keep abreast of the trending ICT.

Keywords: pre-service teachers’ attitude towards learning, metacognitive learning, ICT, pre-service teachers’ perspectives

Procedia PDF Downloads 101
7961 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 113
7960 Avatar Creation for E-Learning

Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud

Abstract:

Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.

Keywords: avatar, e-learning, higher education, students' perception

Procedia PDF Downloads 412
7959 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
7958 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list

Procedia PDF Downloads 295
7957 The Effectiveness of Lesson Study via Learning Communities in Increasing Instructional Self-Efficacy of Beginning Special Educators

Authors: David D. Hampton

Abstract:

Lesson study is used as an instructional technique to promote both student and faculty learning. However, little is known about the usefulness of learning communities in supporting results of lesson study on the self-efficacy and development for tenure-track faculty. This study investigated the impact of participation in a lesson study learning community on 34 new faculty members at a mid-size Midwestern University, specifically regarding implementing lesson study evaluations by new faculty on their reported self-efficacy. Results indicate that participation in a lesson study learning community significantly increased faculty members’ lesson study self-efficacy as well as grant and manuscript production over one academic year. Suggestions for future lesson study around faculty learning communities are discussed.

Keywords: lesson study, learning community, lesson study self-efficacy, new faculty

Procedia PDF Downloads 150
7956 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 12
7955 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 160
7954 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 199
7953 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 188
7952 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage

Authors: Ashraf Ibrahim Awad

Abstract:

It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.

Keywords: knowledge management, e-learning, learning integration, universities, UAE

Procedia PDF Downloads 510
7951 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri

Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham

Abstract:

Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.

Keywords: learning preference, VARK, learning style, nursing

Procedia PDF Downloads 359
7950 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 20
7949 Evaluating the Effectiveness of Digital Game-Based Learning on Educational Outcomes of Students with Special Needs in an Inclusive Classroom

Authors: Shafaq Rubab

Abstract:

The inclusion of special needs students in a classroom is prevailing gradually in developing countries. Digital game-based learning is one the most effective instructional methodology for special needs students. Digital game-based learning facilitates special needs students who actually face challenges and obstacles in their learning processes. This study aimed to evaluate the effectiveness of digital game-based learning on the educational progress of special needs students in developing countries. The quasi-experimental research was conducted by using purposively selected sample size of eight special needs students. Results of both experimental and control group showed that performance of the experimental group students was better than the control group students and there was a significant difference between both groups’ results. This research strongly recommended that digital game-based learning can help special needs students in an inclusive classroom. It also revealed that special needs students can learn efficiently by using pedagogically sound learning games and game-based learning helps a lot for the self-paced fast-track learning system.

Keywords: inclusive education, special needs, digital game-based learning, fast-track learning

Procedia PDF Downloads 294
7948 The Differences in Skill Performance Between Online and Conventional Learning Among Nursing Students

Authors: Nurul Nadrah

Abstract:

As a result of the COVID-19 pandemic, a movement control order was implemented, leading to the adoption of online learning as a substitute for conventional classroom instruction. Thus, this study aims to determine the differences in skill performance between online learning and conventional methods among nursing students. We employed a quasi-experimental design with purposive sampling, involving a total of 59 nursing students, and used online learning as the intervention. As a result, the study found there was a significant difference in student skill performance between online learning and conventional methods. As a conclusion, in times of hardship, it is necessary to implement alternative pedagogical approaches, especially in critical fields like nursing, to ensure the uninterrupted progression of educational programs. This study suggests that online learning can be effectively employed as a means of imparting knowledge to nursing students during their training.

Keywords: nursing education, online learning, skill performance, conventional learning method

Procedia PDF Downloads 50
7947 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning

Procedia PDF Downloads 403
7946 Analyzing Corporate Employee Preferences for E-Learning Platforms: A Survey-Based Approach to Knowledge Updation

Authors: Sandhyarani Mahananda

Abstract:

This study investigates the preferences of corporate employees for knowledge updates on the e-learning platform. The researchers explore the factors influencing their platform choices through a survey administered to employees across diverse industries and job roles. The survey examines preferences for specific platforms (e.g., Coursera, Udemy, LinkedIn Learning). It assesses the importance of content relevance, platform usability, mobile accessibility, and integration with workplace learning management systems. Preliminary findings indicate a preference for platforms that offer curated, job-relevant content, personalized learning paths, and seamless integration with employer-provided learning resources. This research provides valuable insights for organizations seeking to optimize their investment in e-learning and enhance employee knowledge development.

Keywords: corporate training, e-learning platforms, employee preferences, knowledge updation, professional development

Procedia PDF Downloads 24
7945 The Application of ICT in E-Assessment and E-Learning in Language Learning and Teaching

Authors: Seyyed Hassan Seyyedrezaei

Abstract:

The advent of computer and ICT thereafter has introduced many irrevocable changes in learning and teaching. There is substantially growing need for the use of IT and ICT in language learning and teaching. In other words, the integration of Information Technology (IT) into online teaching is of vital importance for education and assessment. Considering the fact that the image of education is undergone drastic changes by the advent of technology, education systems and teachers move beyond the walls of traditional classes and methods in order to join with other educational centers to revitalize education. Given the advent of distance learning, online courses and virtual universities, e-assessment has taken a prominent place in effective teaching and meeting the learners' educational needs. The purpose of this paper is twofold: first, scrutinizing e-learning, it discusses how and why e-assessment is becoming widely used by educationalists and administrators worldwide. As a second purpose, a couple of effective strategies for online assessment will be enumerated.

Keywords: e-assessment, e learning, ICT, online assessment

Procedia PDF Downloads 569
7944 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 169
7943 Students’ Perceptions of Using Wiki Technology to Enhance Language Learning

Authors: Hani Mustafa, Cristina Gonzalez Ruiz, Estelle Bech

Abstract:

The growing influence of digital technologies has made learning and interaction more accessible, resulting in effective collaboration if properly managed. Technology enabled learning has become an important conduit for learning, including collaborative learning. The use of wiki technology, for example, has opened a new learning platform that enables the integration of social, linguistic, and cognitive processes of language learning. It encourages students to collaborate in the construction, analysis, and understanding of knowledge. But to what extent is the use of wikis effective in promoting collaborative learning among students. In addition, how do students perceive this technology in enhancing their language learning? In this study, students were be given a wiki project to complete collaboratively with their group members. Students had to write collaboratively to produce and present a seven-day travel plan in which they had to describe places to visit and things to do to explore the best historical and cultural aspects of the country. The study involves students learning French, Malay, and Spanish as a foreign language. In completing this wiki project, students will move from passive learning of language to real engagement with classmates, requiring them to collaborate and negotiate effectively with one another. The objective of the study is to ascertain to what extent does wiki technology helped in promoting collaborative learning and improving language skills from students’ perception. It is found that while there was improvement in students language skills, the overall experience was less positive due to unfamiliarity with a new learning tool.

Keywords: collaborative learning, foreign language, wiki, teaching

Procedia PDF Downloads 137
7942 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su

Abstract:

Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.

Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward

Procedia PDF Downloads 93
7941 E-Learning in Primary Science: Teachers versus Students

Authors: Winnie Wing Mui So, Yu Chen

Abstract:

This study investigated primary school teachers’ and students’ perceptions of science learning in an e-learning environment. This study used a multiple case study design and involved eight science teachers and their students from four Hong Kong primary schools. The science topics taught included ‘season and weather’ ‘force and movement’, ‘solar and lunar eclipse’ and ‘living things and habitats’. Data were collected through lesson observations, interviews with teachers, and interviews with students. Results revealed some differences between the teachers’ and the students’ perceptions regarding the usefulness of e-learning resources, the organization of student-centred activities, and the impact on engagement and interactions in lessons. The findings have implications for the more effective creation of e-learning environments for science teaching and learning in primary schools.

Keywords: e-learning, science education, teacher' and students' perceptions, primary schools

Procedia PDF Downloads 203