Search results for: cake wastewater industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6283

Search results for: cake wastewater industry

5863 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 72
5862 Evaluation of the Enablers of Industry 4.0 in the Ready-Made Garments Sector of Bangladesh: A Fuzzy Analytical Hierarchy Process Approach

Authors: Shihab-Uz-Zaman Shah, Sanjeeb Roy, Habiba Akter

Abstract:

Keeping the high impact of the Ready-Made Garments (RMG) on the country’s economic growth in mind, this research paves a way for the implementation of Industry 4.0 in the garments industry of Bangladesh. At present, Industry 4.0 is a common buzzword representing the adoption of digital technologies in the production process to transform the existing industries into smart factories and create a great change in the global value chain. The RMG industry is the largest industrial sector of Bangladesh which provides 12.26% to its National GDP (Gross Domestic Product). The work starts with identifying possible enablers of Industry 4.0. To evaluate the enablers, a Multiple-Criteria Decision-Making (MCDM) procedure named Fuzzy Analytical Hierarchy Process (FAHP) was used. A questionnaire was developed as a part of a survey for collecting and analyzing expert opinions from relevant academicians and industrialists. The responses were eventually used as the input for the FAHP which helped to assign weight matrices to the enablers. This weight matrix indicated the level of importance of these enablers. The full paper will discuss the way of a successful evaluation of the enablers and implementation of Industry 4.0 by using these enablers.

Keywords: enablers, fuzzy AHP, industry 4.0, RMG sector

Procedia PDF Downloads 162
5861 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate

Procedia PDF Downloads 461
5860 Philippine Film Industry and Cultural Policy: A Critical Analysis and Case Study

Authors: Michael Kho Lim

Abstract:

This paper examines the status of the film industry as an industry in the Philippines—where or how it is classified in the Philippine industrial classification system and how this positioning gives the film industry an identity (or not) and affects (film) policy development and impacts the larger national economy. It is important to look at how the national government recognises Philippine cinema officially, as this will have a direct and indirect impact on the industry in terms of its representation, conduct of business, international relations, and most especially its implications on policy development and implementation. Therefore, it is imperative that the ‘identity’ of Philippine cinema be clearly established and defined in the overall industrial landscape. Having a clear understanding of Philippine cinema’s industry status provides a better view of the bigger picture and helps us determine cinema’s position in the national agenda in terms of priority setting, future direction and how the state perceives and thereby values the film industry as an industry. This will then serve as a frame of reference that will anchor the succeeding discussion. Once the Philippine film industry status is identified, the paper will then clarify how cultural policy is defined, understood, and applied in the Philippines in relation to Philippine cinema by reviewing and analyzing existing policy documents and pending bills in the Philippine Congress and Senate. Lastly, the paper delves into the roles that (national) cultural institutions and industry organisations play as primary drivers or support mechanisms and how they become platforms (or not) for the upliftment of the independent film sector and towards the sustainability of the film industry. The paper concludes by arguing that the role of the government and how government officials perceive and treats culture is far more important than cultural policy itself, as these policies emanate from them.

Keywords: cultural and creative industries, cultural policy, film industry, Philippine cinema

Procedia PDF Downloads 445
5859 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 168
5858 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 117
5857 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 117
5856 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor

Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra

Abstract:

The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.

Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor

Procedia PDF Downloads 339
5855 Study of the Biochemical Properties of the Protease Coagulant Milk Extracted from Sunflower Cake: Manufacturing Test of Cheeses Uncooked Dough Press and Analysis of Sensory Properties

Authors: Kahlouche Amal, Touzene F. Zohra, Betatache Fatihaet Nouani Abdelouahab

Abstract:

The development of the world production of the cheese these last decades, as well as agents' greater request cheap coagulants, accentuated the search for new surrogates of the rennet. What about the interest to explore the vegetable biodiversity, the source well cheap of many naturals metabolites that the scientists today praise it (thistle, latex of fig tree, Cardoon, seeds of melon). Indeed, a big interest is concerned the search for surrogates of vegetable origin. The objective of the study is to show the possibility of extracting a protease coagulant the milk from the cake of Sunflower, available raw material and the potential source of surrogates of rennet. so, the determination of the proteolytic activity of raw extracts, the purification, the elimination of the pigments of tint of the enzymatic preparations, a better knowledge of the coagulative properties through study of the effect of certain factors (temperature, pH, concentration in CaCl2) are so many factors which contribute to value milk particularly those produced by the small ruminants of the Algerian dairy exploitations. Otherwise, extracts coagulants of vegetable origin allowed today to value traditional, in addition, although the extract coagulants of vegetable origin made it possible today to develop traditional cheeses whose Iberian peninsula is the promoter, but the test of 'pressed paste not cooked' cheese manufacturing led to the semi-scale pilot; and that, by using the enzymatic extract of sunflower (Helianthus annus) which gave satisfactory results as well to the level of outputs as on the sensory level,which, statistically,did not give any significant difference between studied cheeses. These results confirm the possibility of use of this coagulase as a substitute of rennet commercial on an industrial scale.

Keywords: characterization, cheese, Rennet, sunflower

Procedia PDF Downloads 351
5854 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 389
5853 Nutrients Removal from Industrial Wastewater Using Constructed Wetland System

Authors: Christine Odinga, Fred Otieno, Josiah Adeyemo

Abstract:

A study was done to establish the effectiveness of wetland plants: Echinocloa pyramidalis (L) and Cyperus papyrus (L) in purifying wastewater from sugar factory stabilization pond effluent. A pilot-scale Free Water Surface Wetland (FWSCW) system was constructed in Chemelil sugar factory, Kenya for the study. The wetland was divided into 8 sections (cells) and planted with C. papyrus and E. pyramidalis in alternating sequence. Water samples and plant specimen were taken fortnightly at inlets and outlets of the cells and analysed for total phosphates and total nitrates. The data was analysed by use of Microsoft excel and SPSS computer packages. Water analysis recorded a reduction in the nutrient levels between the inlet pond nine and the final outlet channel to River Nyando. The plants grown in the wetland experienced varied increases and reductions in the level of total foliar nitrogen and phosphorous, indicating that though the nutrients were being removed from the wetland, the same were not those assimilated by the plants either. The control plants had higher folia phosphorous and nitrogen, an indication that the system of the constructed wetland was able to eliminate the nutrients effectively from the plants.

Keywords: wetlands, constructed, plants, nutrients, wastewater, industrial

Procedia PDF Downloads 302
5852 Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis

Authors: Eheneden Iyobosa, Rongchang Wang, Adesina Odunayo Blessing, Gaoxiang Chen, Haijing Ren, Jianfu Zhao

Abstract:

In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity.

Keywords: ammonium-rich wastewater, microalgae-bacteria consortium, sulfamethoxazole removal, microbial community diversity, biomass growth

Procedia PDF Downloads 26
5851 HRD Practices in IT Industry – A Study of Select Companies

Authors: Shireesha Devraj, Vishwanath Kokkonda

Abstract:

Information Technology Industry is one of the fastest up-and-coming, knowledge and skill concentrated industries in India. India preserves its position as the world’s notable global sourcing terminus for IT services. The swift progress in the competitive age is possible only through effective human resource development practices. In the IT industry attracting, nurturing talent, retaining and managing human resources have been the principal issues. The sustenance and growth of IT companies worldwide depends on the intellectual capital it possesses. The IT sector cannot be effectively managed through traditional human resource development practices. In order to stay competitive in future, the IT sector in India has to enrich the skilled talent pool through pertinent HRD practices. An attempt is made in this paper to study the trends in Indian IT Industry.

Keywords: HRD practices, IT industry, India, competitive age

Procedia PDF Downloads 356
5850 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia PDF Downloads 499
5849 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars

Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic

Abstract:

Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.

Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal

Procedia PDF Downloads 247
5848 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes

Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J

Abstract:

The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.

Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery

Procedia PDF Downloads 17
5847 Anti-Corruption, an Important Challenge for the Construction Industry!

Authors: Ahmed Stifi, Sascha Gentes, Fritz Gehbauer

Abstract:

The construction industry is perhaps one of the oldest industry of the world. The ancient monuments like the egyptian pyramids, the temples of Greeks and Romans like Parthenon and Pantheon, the robust bridges, old Roman theatres, the citadels and many more are the best testament to that. The industry also has a symbiotic relationship with other . Some of the heavy engineering industry provide construction machineries, chemical industry develop innovative construction materials, finance sector provides fund solutions for complex construction projects and many more. Construction Industry is not only mammoth but also very complex in nature. Because of the complexity, construction industry is prone to various tribulations which may have the propensity to hamper its growth. The comparitive study of this industry with other depicts that it is associated with a state of tardiness and delay especially when we focus on the managerial aspects and the study of triple constraint (time, cost and scope). While some institutes says the complexity associated with it as a major reason, others like lean construction, refers to the wastes produced across the construction process as the prime reason. This paper introduces corruption as one of the prime factors for such delays.To support this many international reports and studies are available depicting that construction industry is one of the most corrupt sectors worldwide, and the corruption can take place throught the project cycle comprising project selection, planning, design, funding, pre-qualification, tendering, execution, operation and maintenance, and even through the reconstrction phase. It also happens in many forms such as bribe, fraud, extortion, collusion, embezzlement and conflict of interest and the self-sufficient. As a solution to cope the corruption in construction industry, the paper introduces the integrity as a key factor and build a new integrity framework to develop and implement an integrity management system for construction companies and construction projects.

Keywords: corruption, construction industry, integrity, lean construction

Procedia PDF Downloads 378
5846 ICT Applications and Gender Participation on the Sustainability of Tourism and Hospitality Industry

Authors: Ayanfulu Yekini

Abstract:

The hotel and tourism industry remains male-dominated, particularly in the upper echelons of management and ICT remained underutilized. While there is a massive revolution in this trend across the globe, it appears much progress has not been made in our nation Nigeria. This paper aimed at evaluating the relevance of ICT and Gender Participation to Sustainability of Hospitality and Tourism Industry in Nigeria. The research study was conducted in tourism organizations, travel agents, hotels, restaurants, resorts, professionals in tourism, travel and hospitality industry within Nigeria. The respondents are from the tourism/hospitality industries employees and entrepreneurs only.

Keywords: ICT, hotel, gender participation, Nigeria, tourism

Procedia PDF Downloads 454
5845 Object-Oriented Modeling Simulation and Control of Activated Sludge Process

Authors: J. Fernandez de Canete, P. Del Saz Orozco, I. Garcia-Moral, A. Akhrymenka

Abstract:

Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.

Keywords: object-oriented programming, activated sludge process, OpenModelica, feedback control

Procedia PDF Downloads 386
5844 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan

Authors: Fawad Ali

Abstract:

Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.

Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer

Procedia PDF Downloads 71
5843 Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process

Authors: Mohamed Gar Alalm

Abstract:

This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995).

Keywords: electro-Fenton, stainless steel, pesticide, wastewater

Procedia PDF Downloads 141
5842 Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater

Authors: Lawrence Mzukisi Madikizela, Luke Chimuka

Abstract:

Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent.

Keywords: adsorption, molecularly imprinted polymer, multi template, pharmaceuticals

Procedia PDF Downloads 304
5841 The Impact of Audit Committee Industry Expertise on Internal Audit Function

Authors: Abdulaziz Alzeban

Abstract:

This study examines whether internal audit function is indeed greater when audit committee members have industry expertise combined with auditing expertise. Data from a survey of 64 chief internal auditors from companies registered on the Saudi Stock Exchange TADAWL, provides results that suggest that when audit committee members possess both industry expertise and auditing expertise, the committee’s role in improving the quality of internal audit is enhanced. This outcome is concluded as one that can be generalized beyond the Saudi Arabian context.

Keywords: internal audit, audit committee, industry expertise, function

Procedia PDF Downloads 357
5840 The Effectiveness of Sulfate Reducing Bacteria in Minimizing Methane and Sludge Production from Palm Oil Mill Effluent (POME)

Authors: K. Abdul Halim, E. L. Yong

Abstract:

Palm oil industry is a major revenue earner in Malaysia, despite the growth of the industry is synonymous with a massive production of agro-industrial wastewater. Through the oil extraction processes, palm oil mill effluent (POME) contributes to the largest liquid wastes generated. Due to the high amount of organic compound, POME can cause inland water pollution if discharged untreated into the water course as well as affect the aquatic ecosystem. For more than 20 years, Malaysia adopted the conventional biological treatment known as lagoon system that apply biological treatment. Besides having difficulties in complying with the standard, a large build up area is needed and retention time is higher. Although anaerobic digester is more favorable, this process comes along with enormous volumes of sludge and methane gas, demanding attention from the mill operators. In order to reduce the sludge production, denitrifiers are to be removed first. Sulfate reducing bacteria has shown the capability to inhibit the growth of methanogens. This is expected to substantially reduce both the sludge and methane production in anaerobic digesters. In this paper, the effectiveness of sulfate reducing bacteria in minimizing sludge and methane will be examined.

Keywords: methane reduction, palm oil mill effluent, sludge minimization, sulfate reducing bacteria, sulfate reduction

Procedia PDF Downloads 433
5839 Sustainability in Tourism and Hospitality Industry in China: Best Practices and Challenges

Authors: Mkhitaryan Davit

Abstract:

The tourism and hospitality industry plays a significant role in China's economy, but it also poses environmental, social, and economic challenges. This paper examines the concept of sustainability within the context of China's tourism and hospitality industry, exploring best practices from 26 Hotels in 15 cities and identifying key challenges. Drawing upon a comprehensive review of existing literature, case studies, and interviews with industry experts, the paper highlights successful sustainability initiatives implemented by various stakeholders, including government bodies, businesses, and non-governmental organizations. Additionally, it discusses the barriers and obstacles hindering the widespread adoption of sustainable practices in the sector, such as lack of awareness, financial constraints, and regulatory issues. The findings provide insights for policymakers, industry practitioners, and researchers to develop strategies and solutions for promoting sustainable tourism and hospitality practices in China, ultimately contributing to the long-term viability and resilience of the industry.

Keywords: sustainability, waste management, renewable energy, hospitality

Procedia PDF Downloads 53
5838 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 391
5837 Construction 4.0: The Future of the Construction Industry in South Africa

Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.

Keywords: building information technology, Construction 4.0, Industry 4.0, smart site

Procedia PDF Downloads 415
5836 Anaerobic Digestion of Coffee Wastewater from a Fast Inoculum Adaptation Stage: Replacement of Complex Substrate

Authors: D. Lepe-Cervantes, E. Leon-Becerril, J. Gomez-Romero, O. Garcia-Depraect, A. Lopez-Lopez

Abstract:

In this study, raw coffee wastewater (CWW) was used as a complex substrate for anaerobic digestion. The inoculum adaptation stage, microbial diversity analysis and biomethane potential (BMP) tests were performed. A fast inoculum adaptation stage was used by the replacement of vinasse to CWW in an anaerobic sequential batch reactor (AnSBR) operated at mesophilic conditions. Illumina MiSeq sequencing was used to analyze the microbial diversity. While, BMP tests using inoculum adapted to CWW were carried out at different inoculum to substrate (I/S) ratios (2:1, 3:1 and 4:1, on a VS basis). Results show that the adaptability percentage was increased gradually until it reaches the highest theoretical value in a short time of 10 d; with a methane yield of 359.10 NmL CH4/g COD-removed; Methanobacterium beijingense was the most abundant microbial (75%) and the greatest specific methane production was achieved at I/S ratio 4:1, whereas the lowest was obtained at 2:1, with BMP values of 320 NmL CH4/g VS and 151 NmL CH4/g VS, respectively. In conclusion, gradual replacement of substrate was a feasible method to adapt the inoculum in a short time even using complex raw substrates, whereas in the BMP tests, the specific methane production was proportional to the initial amount of inoculum.

Keywords: anaerobic digestion, biomethane potential test, coffee wastewater, fast inoculum adaptation

Procedia PDF Downloads 382
5835 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners

Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz

Abstract:

The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.

Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education

Procedia PDF Downloads 213
5834 In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment

Authors: Vijay Sodhi, Charanjit Singh, Neelam Sodhi, Puneet P. S. Cheema, Reena Sharma, Mithilesh K. Jha

Abstract:

The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research.

Keywords: tannery wastewater, moving bed biofilm reactor, sludhe yield, sludge minimization, solids retention time

Procedia PDF Downloads 74