Search results for: atmospheric distillation unit
2600 Clinical Impact of Delirium and Antipsychotic Therapy: 10-Year Experience from a Referral Coronary Care Unit
Authors: Niyada Naksuk, Thoetchai Peeraphatdit, Vitaly Herasevich, Peter A. Brady, Suraj Kapa, Samuel J. Asirvatham
Abstract:
Introduction: Little is known about the safety of antipsychotic therapy for delirium in the coronary care unit (CCU). Our aim was to examine the effect of delirium and antipsychotic therapy among CCU patients. Methods: Pre-study Confusion Assessment Method-Intensive Care Unit (CAM–ICU) criteria were implemented in screening consecutive patients admitted to Mayo Clinic, Rochester, the USA from 2004 through 2013. Death status was prospectively ascertained. Results: Of 11,079 study patients, the incidence of delirium was 8.3% (n=925). Delirium was associated with an increased risk of in-hospital mortality (adjusted OR 1.49; 95% CI, 1.08-2.08; P=.02) and one-year mortality among patients who survived from CCU admission (adjusted HR 1.46; 95% CI, 1.12-1.87; P=.005). A total of 792 doses of haloperidol (5 IQR [3-10] mg/day) or quetiapine (25 IQR [13-50] mg/day) were given to 244 patients with delirium. The clinical characteristics of patients with delirium who did and did not receive antipsychotic therapy were not different (baseline corrected QT [QTc] interval 460±61 ms vs. 457±58 ms, respectively; P = 0.57). In comparison to baseline, mean QTc intervals after the first and third doses of the antipsychotics were not significantly prolonged in haloperidol (448±56, 458±57, and 450±50 ms, respectively) or quetiapine groups (459±54, 467±68, and 462±46 ms, respectively) (P > 0.05 for all). Additionally, in-hospital mortality (adjusted OR 0.67; 95% CI, 0.42-1.04; P=.07), ventricular arrhythmia (adjusted OR 0.87; 95% CI, 0.17-3.62; P=.85) and one-year mortality among the hospital survivors (adjusted HR 0.86; 95% CI 0.62-1.17; P = 0.34) were not different in patients with delirium irrespective of whether or not they received antipsychotics. Conclusions: In patients admitted to the CCU, delirium was associated with an increase in both in-hospital and one-year mortality. Low doses of haloperidol and quetiapine appeared to be safe, without an increase in risk of sudden cardiac death, in-hospital mortality, or one-year mortality in carefully monitored patients.Keywords: arrhythmias, haloperidol, mortality, qtc interval, quetiapine
Procedia PDF Downloads 3722599 Phase Equilibria in the Ln-Sr-Co-O Systems
Authors: Anastasiia Maklakova
Abstract:
The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell
Procedia PDF Downloads 1172598 Valuing Academic Excellence in Higher Education: The Case of Establishing a Human Development Unit in a European Start-up University
Authors: Eleftheria Atta, Yianna Vovides, Marios Katsioloudes
Abstract:
In the fusion of neoliberalism and globalization, Higher Education (HE) is becoming increasingly complex. The changing patterns of the economy worldwide caused the development of high value-added economy HE has been viewed as a social investment, significant for the development of knowledge-based societies and economies. In order to contribute to economic competitiveness universities are required to produce local and employable workers in order to fit into the neoliberal economic environment. The emergence of neoliberal performativity, which measures outcomes, is a key aspect in a neoliberal era. It facilitates the redesign of institutions making organizations and individuals to think about themselves in relation to their performance. Performativity and performance management systems lead academics to become more effective, professionally advance, improve and become better than others and therefore act competitively. Besides the aforementioned complexities, universities also encounter the challenge of maintaining a set of values to guide an institution’s actions and which have always been highly respected in developing a HE institution. The formulation of a clear set of values also determines the institutional culture which will be maintained. It is evident that values create a significant framework for the workplace and may determine positive institutional results. Universities are required to engage in activities for capacity building which will improve their students’ competence as well as offer opportunities to administrative and academic staff to professionally develop in light of neoliberal performativity. Additionally, the University is now considered as an innovation ecosystem playing a significant role in providing education, research and innovation to help create solutions to meet social, environmental and economic challenges. Thus, Universities become central in orchestrating multi-actor innovation networks. This presentation will discuss the establishment of an institutional unit entitled ‘Human Development Unit’ (HDU) in a European start-up university. The activities of the HDU are envisioned as drivers for innovation that would enable the university as a whole to maintain its position in a fast-changing world and be ready to face adaptive challenges. In addition, the HDU provides its students, staff, and faculty with opportunities to advance their academic and professional development through engagement in programs that align with institutional values. It also serves as a connector with the broader community. The presentation will highlight the functions of three centers which the unit will coordinate namely, the Student Development Center (SDC), the Faculty & Staff Development Center (FSDC) and the Continuing Education Center (CEC). The presentation aligns with the aim of the conference as it welcomes presentations to discuss innovations and challenges encountered in HE. Particularly, this presentation seeks to discuss the establishment of an innovative unit at a start-up university which will contribute to creating an institutional culture shaped by the value of academic excellence for students as well as for staff, shaping and defining the functions and activities of the unit. The establishment of the proposed unit is crucial in a start-up university both to differentiate from other competitors but also to sustain its presence given the pressures in a neoliberal HE context.Keywords: academic excellence, globalization, human development unit, neoliberalism
Procedia PDF Downloads 1442597 Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt
Authors: Tarek S. Jamil, Ahmed M. Shaban, Eman S. Mansor, Ahmed A. Karim, Azza M. Abdel Aty
Abstract:
In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane.Keywords: River Nile, NF membrane, pretreatment, UF membrane, water quality
Procedia PDF Downloads 7092596 Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation
Authors: Kai-Sheng Ji, Yi-Feng Lin
Abstract:
The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes.Keywords: pervaporation, chitosan, ZIF-7, memberane separation
Procedia PDF Downloads 4312595 Effect of Structural Change on Productivity Convergence: A Panel Unit Root Analysis
Authors: Amjad Naveed
Abstract:
This study analysed the role of structural change in the process of labour productivity convergence at country and regional levels. Many forms of structural changes occurred within the European Union (EU) countries i.e. variation in sectoral employment share, changes in demand for products, variations in trade patterns and advancement in technology which may have an influence on the process of convergence. Earlier studies on convergence have neglected the role of structural changes which can have resulted in different conclusion on the nature of convergence. The contribution of this study is to examine the role of structural change in testing labour productivity convergence at various levels. For the empirical purpose, the data of 19 EU countries, 259 regions and 6 industries is used for the period of 1991-2009. The results indicate that convergence varies across regional and country levels for different industries when considered the role of structural change.Keywords: labor produvitivty, convergence, structural change, panel unit root
Procedia PDF Downloads 2872594 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 692593 Effects of Dust Storm Events on Tuberculosis Incidence Rate in Northwest of China
Authors: Yun Wang, Ruoyu Wang, Tuo Chen, Guangxiu Liu, Guodong Chen, Wei Zhang
Abstract:
Tuberculosis (TB) is a major public health problem in China. China has the world's second largest tuberculosis epidemic (after India). Xinjiang almost has the highest annual attendance rate of TB in China, and the province is also famous because of its severe dust storms. The epidemic timing starts in February and ends in July, and the dust storm mainly distribute throughout the spring and early summer, which strongly indicate a close linkage between causative agent of TB and dust storm events. However, mechanisms responsible for the observed patterns are still not clearly indentified. By comparing the information on cases of TB from Centers for Disease Control of China annual reports with dust storm atmosphere datasets, we constructed the relationship between the large scale annual occurrence of TB in Xinjiang, a Northwest province of China, and dust storm occurrence. Regional atmospheric indexes of dust storm based on surface wind speed show a clear link between population dynamics of the disease and the climate disaster: the onset of epidemics and the dust storm defined by the atmospheric index share the same mean year. This study is the first that provides a clear demonstration of connections that exist between TB epidemics and dust storm events in China. The development of this study will undoubtedly help early warning for tuberculosis epidemic onset in China and help nationwide and international public health institutions and policy makers to better control TB disease in Norwest China.Keywords: dust storm, tuberculosis, Xinjiang province, epidemic
Procedia PDF Downloads 4472592 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment
Authors: Miklos Taliga
Abstract:
In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.Keywords: safety-critical elements, quality managent, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard
Procedia PDF Downloads 5852591 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis
Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr
Abstract:
In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response
Procedia PDF Downloads 7912590 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate
Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede
Abstract:
Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.Keywords: extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate
Procedia PDF Downloads 3702589 Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane
Authors: Deepali Lal, Sudha Summerwar, Jyoutsna Pandey
Abstract:
The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied.Keywords: distillation plant, acetone, alcohol, pipette, castor leaves, grams pods, larvae of helicoverpa armigera, plant extract, vails, jars, cotton
Procedia PDF Downloads 3192588 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina
Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos
Abstract:
Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.Keywords: body fluids, culture, intensive care unit, microorganisms
Procedia PDF Downloads 2032587 Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits
Authors: Min-Tsai Lai, Taqwa Hariguna
Abstract:
This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions.Keywords: repair-cost limit, cumulative repair-cost limit, minimal repair, periodical replacement policy
Procedia PDF Downloads 3652586 Simulation of a Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 4572585 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie
Authors: Xiaofang Wei
Abstract:
Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria
Procedia PDF Downloads 1762584 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions
Authors: Tatiana G. Smirnova, Stan G. Benjamin
Abstract:
Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes
Procedia PDF Downloads 892583 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical
Authors: Weiwei Xie, Yichao Li
Abstract:
The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process
Procedia PDF Downloads 1562582 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 4002581 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition
Authors: Ramesh Chandra Majhi
Abstract:
Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.Keywords: optimization, passenger car unit, saturation flow, signalized intersection
Procedia PDF Downloads 3272580 An Operators’ Real-sense-based Fire Simulation for Human Factors Validation in Nuclear Power Plants
Authors: Sa-Kil Kim, Jang-Soo Lee
Abstract:
On March 31, 1993, a severe fire accident took place in a nuclear power plant located in Narora in North India. The event involved a major fire in the turbine building of NAPS unit-1 and resulted in a total loss of power to the unit for 17 hours. In addition, there was a heavy ingress of smoke in the control room, mainly through the intake of the ventilation system, forcing the operators to vacate the control room. The Narora fire accident provides us lessons indicating that operators could lose their mind and predictable behaviors during a fire. After the Fukushima accident, which resulted from a natural disaster, unanticipated external events are also required to be prepared and controlled for the ultimate safety of nuclear power plants. From last year, our research team has developed a test and evaluation facility that can simulate external events such as an earthquake and fire based on the operators’ real-sense. As one of the results of the project, we proposed a unit real-sense-based facility that can simulate fire events in a control room for utilizing a test-bed of human factor validation. The test-bed has the operator’s workstation shape and functions to simulate fire conditions such as smoke, heat, and auditory alarms in accordance with the prepared fire scenarios. Furthermore, the test-bed can be used for the operators’ training and experience.Keywords: human behavior in fire, human factors validation, nuclear power plants, real-sense-based fire simulation
Procedia PDF Downloads 2832579 Petrophysical Interpretation of Unconventional Shale Reservoir Naokelekan in Ajeel Oil-Gas Field
Authors: Abeer Tariq, Mohammed S. Aljawad, Khaldoun S. Alfarisi
Abstract:
This paper aimed to estimate the petrophysical properties (porosity, permeability, and fluid saturation) of the Ajeel well (Aj-1) Shale reservoir. Petrophysical properties of the Naokelekan Formation at Ajeel field are determined from the interpretation of open hole log data of one well which penetrated the source rock reservoir. However, depending on these properties, it is possible to divide the Formation which has a thickness of approximately 28-34 m, into three lithological units: A is the upper unit (thickness about 9 to 13 m) consisting of dolomitized limestones; B is a middle unit (thickness about 13 to 20 m) which is composed of dolomitic limestone, and C is a lower unit (>22 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.024), the average resistivity of the mud filtration (Rmf = 0.46), and the Archie parameters were determined by the picket plot method, where (m) value equal to 1.86, (n) value equal to 2 and (a) value equal to 1. Also, this reservoir proved to be economical for future developments to increase the production rate of the field by dealing with challenging reservoirs. In addition, Porosity values and water saturation Sw were calculated along with the depth of the composition using Interactive Petrophysics (IP) V4.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second and third zone. From the flow zone indicator FZI method, there are two rock types in the studied reservoir.Keywords: petrophysical properties, porosity, permeability, ajeel field, Naokelekan formation, Jurassic sequences, carbonate reservoir, source rock
Procedia PDF Downloads 912578 Complaint Management Mechanism: A Workplace Solution in Development Sector of Bangladesh
Authors: Nusrat Zabeen Islam
Abstract:
Partnership between local Non-Government organizations (NGO) and International development organizations has become an important feature in the development sector of Bangladesh. It is an important challenge for International development organizations to work with local NGOs with proper HR practice. Local NGOs have a lack of quality working environment and this affects the employee’s work experiences and overall performance at individual, partnership with International development organizations and organizational level. Many local development organizations due to the size of the organization and scope do not have a human resource (HR) unit. Inadequate Human Resource Policies, skills, leadership and lack of effective strategy is now a common scenario in Non-Government organization sector of Bangladesh. So corruption, nepotism, and fraud, risk of Political Contribution in office /work space, Sexual/ gender based abuse, insecurity take place in work place of development sector. The Complaint Management Mechanism (CMM) in human resource management could be one way to improve human resource competence in these organizations. The responsibility of Complaint Management Unit (CMU) of an International development organization is to make workplace maltreating, discriminating communities free. The information of impact of CMM was collected through case study of an International organization and some of its partner national organizations in Bangladesh who are engaged in different projects/programs. In this mechanism International development organizations collect complaints from beneficiaries/ staffs by complaint management unit and investigate by segregating the type and mood of the complaint and find out solution to improve the situation within a very short period. A complaint management committee is formed jointly with HR and management personnel. Concerned focal point collect complaints and share with CM unit. By conducting investigation, review of findings, reply back to CM unit and implementation of resolution through this mechanism, a successful bridge of communication and feedback can be established within beneficiaries, staffs and upper management. The overall result of Complaint management mechanism application indicates that by applying CMM accountability and transparency of workplace and workforce in development organization can be increased significantly. Evaluations based on outcomes, and measuring indicators such as productivity, satisfaction, retention, gender equity, proper judgment will guide organizations in building a healthy workforce, and will also clearly articulate the return on investment and justify any need for further funding.Keywords: human resource management in NGOs, challenges in human resource, workplace environment, complaint management mechanism
Procedia PDF Downloads 3222577 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation
Procedia PDF Downloads 1412576 Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship
Authors: Hyungsuk Han, Soohong Jeon, Chungwon Lee, YongHoon Kim
Abstract:
When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration.Keywords: Jeffcott rotor, lateral-torsional coupled vibration, propulsion shaft, stability
Procedia PDF Downloads 2272575 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 432574 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman
Abstract:
Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma
Procedia PDF Downloads 3382573 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1242572 The Planning Criteria of Block-Unit Redevelopment to Improve Residential Environment: Focused on Redevelopment Project in Seoul
Authors: Hong-Nam Choi, Hyeong-Wook Song, Sungwan Hong, Hong-Kyu Kim
Abstract:
In Korea, elements that decide the quality of residential environment are not only diverse, but show deviation as well. However, people do not consider these elements and instead, they try to settle the uniformed style of residential environment, which focuses on the construction development of apartment housing and business based plans. Recently, block-unit redevelopment is becoming the standout alternative plan of standardize redevelopment projects, but constructions become inefficient because of indefinite planning criteria. In conclusion, the following research is about analyzing and categorizing the development method and legal ground of redevelopment project district, plan determinant and applicable standard. The purpose of this study is to become a basis in compatible analysis of planning standards that will happen in the future.Keywords: shape restrictions, improvement of regulation, diversity of residential environment, classification of redevelopment project, planning criteria of redevelopment, special architectural district (SAD)
Procedia PDF Downloads 4852571 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software
Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather
Abstract:
As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software
Procedia PDF Downloads 275