Search results for: accidents predictions
725 Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks.Keywords: computer simulation modeling, concussion, impact, speed skater
Procedia PDF Downloads 140724 Application of Sensory Thermography on Workers of a Wireless Industry in Mexico
Authors: Claudia Camargo Wilson, Enrique Javier de la Vega Bustillos, Jesús Everardo Olguín Tiznado, Juan Andrés López Barreras, Sandra K. Enriquez
Abstract:
This study focuses on the application of sensory thermography, as a non-invasive method to evaluate the musculoskeletal injuries that industry workers performing Highly Repetitive Movements (HRM) may acquire. It was made at a wireless company having the target of analyze temperatures in worker’s wrists, elbows and shoulders in workstations during their activities, this thru sensorial thermography with the goal of detecting maximum temperatures (Tmax) that could indicate possible injuries. The tests were applied during 3 hours for only 2 workers that work in workstations where there’s been the highest index of injuries and accidents. We were made comparisons for each part of the body that were study for both because of the similitude between the activities of the workstations; they were requiring both an immediate evaluation. The Tmax was recorder during the test of the worker 2, in the left wrist, reaching a temperature of 35.088ºC and with a maximum increase of 1.856°C.Keywords: thermography, maximum temperaturas (Tmax), highly repetitive movements (HRM), operator
Procedia PDF Downloads 403723 Multitasking Incentives and Employee Performance: Evidence from Call Center Field Experiments and Laboratory Experiments
Authors: Sung Ham, Chanho Song, Jiabin Wu
Abstract:
Employees are commonly incentivized on both quantity and quality performance and much of the extant literature focuses on demonstrating that multitasking incentives lead to tradeoffs. Alternatively, we consider potential solutions to the tradeoff problem from both a theoretical and an experimental perspective. Across two field experiments from a call center, we find that tradeoffs can be mitigated when incentives are jointly enhanced across tasks, where previous research has suggested that incentives be reduced instead of enhanced. In addition, we also propose and test, in a laboratory setting, the implications of revising the metric used to assess quality. Our results indicate that metrics can be adjusted to align quality and quantity more efficiently. Thus, this alignment has the potential to thwart the classic tradeoff problem. Finally, we validate our findings with an economic experiment that verifies that effort is largely consistent with our theoretical predictions.Keywords: incentives, multitasking, field experiment, experimental economics
Procedia PDF Downloads 159722 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 536721 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 146720 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 340719 The Predictive Power of Successful Scientific Theories: An Explanatory Study on Their Substantive Ontologies through Theoretical Change
Authors: Damian Islas
Abstract:
Debates on realism in science concern two different questions: (I) whether the unobservable entities posited by theories can be known; and (II) whether any knowledge we have of them is objective or not. Question (I) arises from the doubt that since observation is the basis of all our factual knowledge, unobservable entities cannot be known. Question (II) arises from the doubt that since scientific representations are inextricably laden with the subjective, idiosyncratic, and a priori features of human cognition and scientific practice, they cannot convey any reliable information on how their objects are in themselves. A way of understanding scientific realism (SR) is through three lines of inquiry: ontological, semantic, and epistemological. Ontologically, scientific realism asserts the existence of a world independent of human mind. Semantically, scientific realism assumes that theoretical claims about reality show truth values and, thus, should be construed literally. Epistemologically, scientific realism believes that theoretical claims offer us knowledge of the world. Nowadays, the literature on scientific realism has proceeded rather far beyond the realism versus antirealism debate. This stance represents a middle-ground position between the two according to which science can attain justified true beliefs concerning relational facts about the unobservable realm but cannot attain justified true beliefs concerning the intrinsic nature of any objects occupying that realm. That is, the structural content of scientific theories about the unobservable can be known, but facts about the intrinsic nature of the entities that figure as place-holders in those structures cannot be known. There are two possible versions of SR: Epistemological Structural Realism (ESR) and Ontic Structural Realism (OSR). On ESR, an agnostic stance is preserved with respect to the natures of unobservable entities, but the possibility of knowing the relations obtaining between those entities is affirmed. OSR includes the rather striking claim that when it comes to the unobservables theorized about within fundamental physics, relations exist, but objects do not. Focusing on ESR, questions arise concerning its ability to explain the empirical success of a theory. Empirical success certainly involves predictive success, and predictive success implies a theory’s power to make accurate predictions. But a theory’s power to make any predictions at all seems to derive precisely from its core axioms or laws concerning unobservable entities and mechanisms, and not simply the sort of structural relations often expressed in equations. The specific challenge to ESR concerns its ability to explain the explanatory and predictive power of successful theories without appealing to their substantive ontologies, which are often not preserved by their successors. The response to this challenge will depend on the various and subtle different versions of ESR and OSR stances, which show a sort of progression through eliminativist OSR to moderate OSR of gradual increase in the ontological status accorded to objects. Knowing the relations between unobserved entities is methodologically identical to assert that these relations between unobserved entities exist.Keywords: eliminativist ontic structural realism, epistemological structuralism, moderate ontic structural realism, ontic structuralism
Procedia PDF Downloads 118718 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 161717 A Socio-Technical Approach to Cyber-Risk Assessment
Authors: Kitty Kioskli, Nineta Polemi
Abstract:
Evaluating the levels of cyber-security risks within an enterprise is most important in protecting its information system, services and all its digital assets against security incidents (e.g. accidents, malicious acts, massive cyber-attacks). The existing risk assessment methodologies (e.g. eBIOS, OCTAVE, CRAMM, NIST-800) adopt a technical approach considering as attack factors only the capability, intention and target of the attacker, and not paying attention to the attacker’s psychological profile and personality traits. In this paper, a socio-technical approach is proposed in cyber risk assessment, in order to achieve more realistic risk estimates by considering the personality traits of the attackers. In particular, based upon principles from investigative psychology and behavioural science, a multi-dimensional, extended, quantifiable model for an attacker’s profile is developed, which becomes an additional factor in the cyber risk level calculation.Keywords: attacker, behavioural models, cyber risk assessment, cybersecurity, human factors, investigative psychology, ISO27001, ISO27005
Procedia PDF Downloads 165716 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 149715 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System
Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi
Abstract:
Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process
Procedia PDF Downloads 142714 Quantifying Individual Performance of Pakistani Cricket Players
Authors: Kasif Khan, Azlan Allahwala, Moiz Ali, Hasan Lodhi, Umer Amjad
Abstract:
The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket, it is not sufficient to evaluate performance on the basis of average. The biasness in selecting batsman and bowler on the basis of their past performance. The objective is to predict the best player and comparing their performance on the basis of venue, opponent, weather, and particular position. On the basis of predictions and analysis, and comparison the best team is selected for next upcoming series of Pakistan. The system is based and will be built to aid analyst in finding best possible team combination of Pakistan for a particular match and by providing them with advisories so that they can select the best possible team combination. This will also help the team management in identifying a perfect batting order and the bowling order for each match.Keywords: data analysis, Pakistan cricket players, quantifying individual performance, cricket
Procedia PDF Downloads 297713 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 330712 Brexit and Financial Stability: An Agent-Based Simulation
Authors: Aristeidis Samitas, Stathis Polyzos
Abstract:
As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.Keywords: Banking Crises, Brexit, Financial Stability, VBanking
Procedia PDF Downloads 280711 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 397710 Investigating the Impacts of Climate Change on Soil Erosion: A Case Study of Kasilian Watershed, Northern Iran
Authors: Mohammad Zare, Mahbubeh Sheikh
Abstract:
Many of the impact of climate change will material through change in soil erosion which were rarely addressed in Iran. This paper presents an investigation of the impacts of climate change soil erosin for the Kasilian basin. LARS-WG5 was used to downscale the IPCM4 and GFCM21 predictions of the A2 scenarios for the projected periods of 1985-2030 and 2080-2099. This analysis was carried out by means of the dataset the International Centre for Theoretical Physics (ICTP) of Trieste. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE). Results indicate that soil erosion increase or decrease, depending on which climate scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods.Keywords: Kasilian watershed, climatic change, soil erosion, LARS-WG5 Model, RUSLE
Procedia PDF Downloads 505709 Shift Work and Its Consequences
Authors: Parastoo Vasli
Abstract:
In today's society, more and more people work during ‘non-standard’ working hours, including shift and night work, which are perceived danger factors for health, safety, and social prosperity. Appropriate preventive and protective measures are needed to reduce side effects and ensure that the worker can adapt sufficiently. Of the many health effects associated with shift work, sleep disorders are the most widely recognized. The most troubling acute symptoms are difficulty falling asleep, short sleep, and drowsiness during working hours that last for days on end. The outcomes checked on plainly exhibit that shift work is related to expanded mental, social, and physiological drowsiness. Apparently, the effects are due to circadian and hemostatic compounds (sleep loss). Drowsiness is especially evident during night shifts and may lead to drowsiness in real workplace accidents. In some occupations, this is clearly a risk that could endanger human lives and has enormous financial outcomes. These dangers clearly affect a large number of people and should be of great importance to society. In particular, safety on night shifts is consistently reduced.Keywords: shift work, night work, safety, health, drowsiness
Procedia PDF Downloads 224708 Impact of the Transport on the Urban Heat Island
Authors: L. Haddad, Z. Aouachria
Abstract:
The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.Keywords: atmospheric pollution, impact on the health, urban transport, heat island
Procedia PDF Downloads 395707 Wind Comfort and Safety of People in the Vicinity of Tall Buildings
Authors: Mohan Kotamrazu
Abstract:
Tall buildings block and divert strong upper level winds to the ground. These high velocity winds many a time create adverse wind effects at ground level which can be uncomfortable and even compromise the safety of pedestrians and people who frequent the spaces in the vicinity of tall buildings. Discomfort can be experienced around the entrances and corners of tall buildings. Activities such as strolling or sitting in a park, waiting for a bus near a tall building can become highly unpleasant. For the elderly unpleasant conditions can also become dangerous leading to accidents and injuries. Today there is a growing concern among architects, planners and urban designers about the wind environment in the vicinity of tall building. Regulating authorities insist on wind tunnel testing of tall buildings in cities such as Wellington, Auckland, Boston, San Francisco, etc. prior to granting permission for their construction The present paper examines the different ways that tall buildings can induce strong winds at pedestrian level and their impact on people who frequent the spaces around tall buildings.Keywords: tall buildings, wind effects, wind comfort, wind safety
Procedia PDF Downloads 373706 Rehabilitation of CP Using Pediatric Functional Independent Measure (WeeFIM) as Indicator Instruments Suitable for CP: Saudi's Perspective
Authors: Bara M. Yousef
Abstract:
Kingdome of Saudi Arabia (KSA). High numbers of traffic accidents with sever, moderate and mild level of impairments admits to Sultan bin Abdulaziz humanitarian city. Over a period of 4 months the city received 111 male and 79 female subjects with CP, who received 4-6 weeks of rehabilitation and using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings shed the light on the fact that nearly 85% of people at admission got better after rehabilitation program services at individual sever moderate and mild and has arrange of (59 out of 128 WeeFIM score) and by the time of discharge they leave the city with better FIM score close to (72 out of 128 WeeFIM score) for the entire study sample. WeeFIM score is providing fair evidence to rehabilitation specialists to assess their outcomes. However there is a need to implement other instruments and compare it to WeeFIM in order to reach better outcomes at discharge level.Keywords: Cerepral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 226705 Progress in Accuracy, Reliability and Safety in Firedamp Detection
Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza
Abstract:
The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.Keywords: ATEX standards, gas detector, methane meter, mining safety
Procedia PDF Downloads 137704 GSM and GPS Based Smart Helmet System for Sudden Accidental Rescue Operation
Authors: A. B. M. Aftabuzzaman, Md. Mahin Hossain, Md. Ifran Sharif Imthi, Md. Razu Ahmed, A. Z. M. Imran
Abstract:
The goals of the study are to develop a safety system that is combined with a smart helmet to reduce the likelihood of two-wheeler bike accidents and cases of drunk driving. The smart helmet and the limit switch both verify when a biker is wearing a helmet. The presence of alcohol in the rider's breath is detected using alcohol sensors. The bike remains turned off if the rider is not wearing a helmet or if the rider's breath contains alcohol. The bike will not start until the rider is wearing a helmet and there is no alcoholic substance present, indicating that the bike rider has not consumed alcohol. When the rider faces in an accident, instantly the smart helmet hits the ground and respective sensors detect the movement and tilt of the protective helmet and instantly sending the information about the location of accident to the rider's relatives and the crisis contact numbers which are introduced in the smart helmet respective device. So this project finding will ensure safe bike journey and improve safe commercial bike services in Bangladesh.Keywords: smart helmet, GSM, GPS, bike, biker accident
Procedia PDF Downloads 105703 An Approaching Index to Evaluate a forward Collision Probability
Authors: Yuan-Lin Chen
Abstract:
This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway.Keywords: approaching index, forward collision probability, time to collision, time headway
Procedia PDF Downloads 293702 A Design of Active Elastic Metamaterial with Extreme Anisotropic Stiffness
Authors: Conner Side, Hunter Pearce
Abstract:
Traditional elastic metamaterials have difficulties in achieving independent tunable working frequency in two orthogonal directions. In this work, we proposed a pragmatic active elastic metamaterial to obtain extreme anisotropic stiffness with a tunable working frequency range. Piezoelectric patches shunted with variable conductance are properly proposed in the microstructure unit cell to manipulate the effective elastic stiffness along two principal directions at the subwavelength scale. Simulation of manipulation of wave propagation in such metamaterials is performed. An experimental study is also conducted to validate the design, and the results are in good agreement with mathematic analysis and numerical predictions. The proposed active elastic metamaterial will bring forth significant guidelines for ultrasonic imaging technique, and the results are expected to offer novel and general design methodology for elastic metamaterials.Keywords: microstructure, active elastic metamaterials, piezoelectric patches, experimental study
Procedia PDF Downloads 94701 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger
Authors: Syukri Himran, Rustan Taraka, Anto Duma
Abstract:
The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.Keywords: latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection
Procedia PDF Downloads 568700 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 73699 Safety Management and Occupational Injuries Assessing the Mediating Role of Safety Compliance: Downstream Oil and Gas Industry of Malaysia
Authors: Muhammad Ajmal, Ahmad Shahrul Nizam Bin Isha, Shahrina Md. Nordin, Paras Behrani, Al-Baraa Abdulrahman Al-Mekhlafi
Abstract:
This study aims to investigate the impact of safety management practices via safety compliance on occupational injuries in the context of downstream the oil and gas industry of Malaysia. However, it is still challenging for researchers and academicians to control occupational injuries in high-safety-sensitive organizations. In this study response rate was 62%, and 280 valid responses were used for analysis through SmartPLS. The study results revealed that safety management practices (management commitment, safety training, safety promotion policies, workers’ involvement) play a significant role in lowering the rate of accidents in downstream the oil and gas industry via safety compliance. Furthermore, the study results also revealed that safety management practices also reduce safety management costs of organizations, e.g., lost work days and employee absenteeism. Moreover, this study is helpful for safety leaders and managers to understand the importance of safety management practices to lower the ratio of occupational injuries.Keywords: safety management, safety compliance, occupational injuries, oil and gas, Malaysia
Procedia PDF Downloads 154698 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 480697 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 74696 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 161