Search results for: Laser Micro Machining (LMM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2889

Search results for: Laser Micro Machining (LMM)

2469 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 402
2468 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
2467 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device

Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng

Abstract:

The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.

Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect

Procedia PDF Downloads 412
2466 Situated Urban Rituals: Rethinking the Meaning and Practice of Micro Culture in Cities in East Asia

Authors: Heide Imai

Abstract:

Contemporary cities, especially in Japan, have reached an indescribable complexity and excessive, global investments blur formal, rooted structures. Modern urban agglomerations blindly trust a macro understanding, whereas everyday activities which portray the human degree of living space are being suppressed and erased. The paper will draw upon the approach ‘Micro-Urbanism’ which focus on the sensitive and indigenous side of contemporary cities, which in fact can hold the authentic qualities of a city. Related to this approach is the term ‘Micro-Culture’ which is used to clarify the inner realities of the everyday living space on the example of the Japanese urban backstreet. The paper identifies an example of a ‘micro-zone’ in terms of ‘street space’, originally embedded in the landscape of the Japanese city. And although the approach ‘Micro-Urbanism’ is more complex, the understanding of the term can be tackled by a social analysis of the street, as shown on the backstreet called roji and closely linked examples of ‘situated’ urban rituals like (1) urban festivities, (2) local markets/ street vendors and (3) artistic, intellectual tactics. Likewise, the paper offers insights in a ‘community of streets’ which boundaries are specially shaped by cultural activity and social networks.

Keywords: urban rituals, community, streets as micro-zone, everyday space

Procedia PDF Downloads 311
2465 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 244
2464 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure

Procedia PDF Downloads 423
2463 Discrimination between Defective and Non-Defective Coffee Beans Using a Laser Prism Spectrometer

Authors: A. Belay, B. Kebede

Abstract:

The concentration- and temperature-dependent refractive indices of solutions extracted from defective and non-defective coffee beans have been investigated using a He–Ne laser. The refractive index has a linear relationship with the presumed concentration of the coffee solutions in the range of 0.5–3%. Higher and lower values of refractive index were obtained for immature and non-defective coffee beans, respectively. The Refractive index of bean extracts can be successfully used to separate defective from non-defective beans.

Keywords: coffee extract, refractive index, temperature dependence

Procedia PDF Downloads 150
2462 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 191
2461 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy

Abstract:

This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.

Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation

Procedia PDF Downloads 83
2460 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 119
2459 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress

Procedia PDF Downloads 303
2458 Study of the Energy Levels in the Structure of the Laser Diode GaInP

Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi

Abstract:

This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.

Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages

Procedia PDF Downloads 492
2457 Analysis of the Theoretical Values of Several Characteristic Parameters of Surface Topography in Rotational Turning

Authors: J. Kundrák, I. Sztankovics, K. Gyáni

Abstract:

In addition to the increase of the material removal rate or surface rate, or the improvement of the surface quality, which are the main aims of the development of manufacturing technology, a growing number of other manufacturing requirements have appeared in the machining of workpiece surfaces. Among these, it is becoming increasingly dominant to generate a surface topography in finishing operations which meet more closely the needs of operational requirements. These include the examination of the surface periodicity and/or ensuring that the twist structure values are within the limits (or even preventing its occurrence) in specified cases such as on the sealing surfaces of rotating shafts or on the inside working surfaces of needle roller bearings. In the view of the measurement, the twist has different parameters from surface roughness, which must be determined for the machining procedures. Therefore in this paper the alteration of the theoretical values of the parameters determining twist structure are studied as a function of the kinematic properties.

Keywords: kinematic parameters, rotational turning, surface topography, twist structure

Procedia PDF Downloads 374
2456 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Authors: F. Brunke, L. Waalkes, C. Siemers

Abstract:

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Keywords: Ti 15Mo, titanium alloys, rare earth metals, free machining alloy

Procedia PDF Downloads 342
2455 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany

Authors: Bara' Al-Mistarehi

Abstract:

Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.

Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure

Procedia PDF Downloads 178
2454 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching

Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei

Abstract:

Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.

Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness

Procedia PDF Downloads 390
2453 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel

Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan

Abstract:

An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.

Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration

Procedia PDF Downloads 379
2452 Micro-Cantilever Tests on Hydride Blister and Zirconium Matrix of Zircaloy-4 Cladding Tube

Authors: Ho-A Kim, Jae-Soo Noh

Abstract:

During reactor operation, hydride blister can occur in spent nuclear fuel (SNF) claddings, and it could worsen the integrity of the claddings locally. Hydride blister can be critical when a pinch-type load is applied in the process of SNF handling and transportation. Micro-cantilever tests were performed to evaluate the risk of local hydride blister by comparing the fracture toughness of local hydride blister and pre-hydrided Zr alloy matrix of SNF cladding on a microscale. Hydride blister was generated by a gaseous charging procedure to simulate an SNF cladding. Micro-cantilevers and pre-cracks were ion-milled with the Ga+ ion beam of FEI Helios 600 at 30kV acceleration voltage. Micro-cantilever tests were conducted using PI 85 pico-indenter (HYSTRON) with for sided conductive diamond flat tip (1 μm x 1 μm) at a speed of 5 nm/sec. The results show that the hydride blister specimen could be fractured in the elastic deformation region, and the fracture toughness of the hydride blister specimen could drop up to 60% of that of the pre-hydrided Zr alloy matrix. Therefore, local hydride blister can degrade the integrity of SNF cladding, and the effect of hydride blister should be taken into account when evaluating failure criteria of claddings during handling, storage, and transportation of SNF.

Keywords: fracture toughness, hydride blister, micro-cantilever test, spent nuclear fuel cladding.

Procedia PDF Downloads 137
2451 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 184
2450 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City

Authors: Linlin Guo, Baofeng Li

Abstract:

Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.

Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design

Procedia PDF Downloads 240
2449 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes

Authors: Mohamed E. Eleshaky

Abstract:

This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.

Keywords: drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts

Procedia PDF Downloads 327
2448 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 341
2447 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 344
2446 Endoscopic Treatment of Patients with Large Bile Duct Stones

Authors: Yuri Teterin, Lomali Generdukaev, Dmitry Blagovestnov, Peter Yartcev

Abstract:

Introduction: Under the definition "large biliary stones," we referred to stones over 1.5 cm, in which standard transpapillary litho extraction techniques were unsuccessful. Electrohydraulic and laser contact lithotripsy under SpyGlass control have been actively applied for the last decade in order to improve endoscopic treatment results. Aims and Methods: Between January 2019 and July 2022, the N.V. Sklifosovsky Research Institute of Emergency Care treated 706 patients diagnosed with choledocholithiasis who underwent biliary stones removed from the common bile duct. Of them, in 57 (8, 1%) patients, the use of a Dormia basket or Biliary stone extraction balloon was technically unsuccessful due to the size of the stones (more than 15 mm in diameter), which required their destruction. Mechanical lithotripsy was used in 35 patients, and electrohydraulic and laser lithotripsy under SpyGlass direct visualization system - in 26 patients. Results: The efficiency of mechanical lithotripsy was 72%. Complications in this group were observed in 2 patients. In both cases, on day one after lithotripsy, acute pancreatitis developed, which resolved on day three with conservative therapy (Clavin-Dindo type 2). The efficiency of contact lithotripsy was in 100% of patients. Complications were not observed in this group. Bilirubin level in this group normalized on the 3rd-4th day. Conclusion: Our study showed the efficacy and safety of electrohydraulic and laser lithotripsy under SpyGlass control in a well-defined group of patients with large bile duct stones.

Keywords: contact lithotripsy, choledocholithiasis, SpyGlass, cholangioscopy, laser, electrohydraulic system, ERCP

Procedia PDF Downloads 80
2445 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 339
2444 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction

Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang

Abstract:

The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.

Keywords: surface machining, EBSD, subsurface layer, local deformation

Procedia PDF Downloads 331
2443 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 183
2442 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 79
2441 Property of Diamond Coated Tools for Lapping Single-Crystal Sapphire Wafer

Authors: Feng Wei, Lu Wenzhuang, Cai Wenjun, Yu Yaping, Basnet Rabin, Zuo Dunwen

Abstract:

Diamond coatings were prepared on cemented carbide by hot filament chemical vapor deposition (HFCVD) method. Lapping experiment of single-crystal sapphire wafer was carried out using the prepared diamond coated tools. The diamond coatings and machined surface of the sapphire wafer were evaluated by SEM, laser confocal microscope and Raman spectrum. The results indicate that the lapping sapphire chips are small irregular debris and long thread-like debris. There is graphitization of diamond crystal during the lapping process. A low surface roughness can be obtained using a spherical grain diamond coated tool.

Keywords: lapping, nano-micro crystalline diamond coating, Raman spectrum, sapphire

Procedia PDF Downloads 493
2440 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC

Authors: Aref Yazdani, Ali Tofighi

Abstract:

We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.

Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model

Procedia PDF Downloads 144