Search results for: HMI (Human Machine Interface)
11591 CNC Milling-Drilling Machine Cutting Tool Holder
Authors: Hasan Al Dabbas
Abstract:
In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.Keywords: drilling, milling, chucks, cutting edges, tools, machines
Procedia PDF Downloads 57311590 Evaluating the Performance of Color Constancy Algorithm
Authors: Damanjit Kaur, Avani Bhatia
Abstract:
Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.Keywords: color constancy, gray world, white patch, modified white patch
Procedia PDF Downloads 32111589 Influence of Multi-Walled Carbon Nanotube on Interface Fracture of Sandwich Composite
Authors: Alak Kumar Patra, Nilanjan Mitra
Abstract:
Interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT has been investigated through experimental methods. Results demonstrate an improvement in interface fracture toughness values (GC) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum assisted resin transfer method (VARTM) used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results are supported by high resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation.Keywords: carbon nanotube, foam, glass-epoxy, interfacial fracture, sandwich composite
Procedia PDF Downloads 43111588 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 8811587 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations
Authors: Rady Farag Aziz Ibrahim
Abstract:
The gap between Islamic terrorism and human rights has become an important issue in the fight against Islamic terrorism worldwide. This situation is repeated because terrorism and human rights are interconnected in such a way that when the former begins, the latter becomes subject to violence. This unknown relationship was recognized in the Vienna Declaration and Program of Action adopted at the International Conference on Human Rights held in Vienna on 25 June 1993, confirming that terrorist acts, in all their forms and manifestations, aim to destroy the rights of individuals. humanity to destroy. Therefore, Islamic terrorism is a violation of basic human rights. For this purpose, the first part of the article will focus on the relationship between terrorism and human rights and the synergy between these two concepts. The second part then explores the emerging concept of cyber threats and how they exist. Additionally, technology analysis will be conducted against threats based on human rights. This will be achieved through analysis of the concept of 'securitization' of human rights and by striking a balance between counter-terrorism measures and the protection of human rights at all costs. This article concludes with recommendations on how to balance terrorism and human rights today.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development
Procedia PDF Downloads 4411586 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 15111585 Parametric Template-Based 3D Reconstruction of the Human Body
Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu
Abstract:
This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint
Procedia PDF Downloads 8011584 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 23211583 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 4511582 The Current State Of Human Gait Simulator Development
Authors: Stepanov Ivan, Musalimov Viktor, Monahov Uriy
Abstract:
This report examines the current state of human gait simulator development based on the human hip joint model. This unit will create a database of human gait types, useful for setting up and calibrating mechano devices, as well as the creation of new systems of rehabilitation, exoskeletons and walking robots. The system has ample opportunity to configure the dimensions and stiffness, while maintaining relative simplicity.Keywords: hip joint, human gait, physiotherapy, simulation
Procedia PDF Downloads 40611581 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 6111580 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 28711579 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 9811578 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 11911577 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 7311576 Human Factors Issues and Measures in Advanced NPPs
Authors: Jun Su Ha
Abstract:
Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant
Procedia PDF Downloads 47111575 Development of 3D Laser Scanner for Robot Navigation
Authors: Ali Emre Öztürk, Ergun Ercelebi
Abstract:
Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model
Procedia PDF Downloads 27711574 Finite Element Analysis of Steel-Concrete Composite Structures Considering Bond-Slip Effect
Authors: WonHo Lee, Hyo-Gyoung Kwak
Abstract:
A numerical model considering slip behavior of steel-concrete composite structure is introduced. This model is based on a linear bond stress-slip relation along the interface. Single node was considered at the interface of steel and concrete member in finite element analysis, and it improves analytical problems of model that takes double nodes at the interface by adopting spring elements to simulate the partial interaction. The slip behavior is simulated by modifying material properties of steel element contacting concrete according to the derived formulation. Decreased elastic modulus simulates the slip occurrence at the interface and decreased yield strength simulates drop in load capacity of the structure. The model is verified by comparing numerical analysis applying this model with experimental studies. Acknowledgment—This research was supported by a grant(13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.Keywords: bond-slip, composite structure, partial interaction, steel-concrete structure
Procedia PDF Downloads 17811573 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 13611572 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 8911571 The Impact of Human Rights on Society and Legislations
Authors: Eid Nasr Saad Nasr
Abstract:
Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 6111570 Design and Experiment of Orchard Gas Explosion Subsoiling and Fertilizer Injection Machine
Authors: Xiaobo Xi, Ruihong Zhang
Abstract:
At present, the orchard ditching and fertilizing technology has a series of problems, such as easy tree roots damage, high energy consumption and uneven fertilizing. In this paper, a gas explosion subsoiling and fertilizer injection machine was designed, which used high pressure gas to shock soil body and then injected fertilizer. The drill pipe mechanism with pneumatic chipping hammer excitation and hydraulic assistance was designed to drill the soil. The operation of gas and liquid fertilizer supply was controlled by PLC system. The 3D model of the whole machine was established by using SolidWorks software. The machine prototype was produced, and field experiments were carried out. The results showed that soil fractures were created and diffused by gas explosion, and the subsoiling effect radius reached 40 cm under the condition of 0.8 MPa gas pressure and 30 cm drilling depth. What’s more, the work efficiency is 0.048 hm2/h at least. This machine could meet the agronomic requirements of orchard, garden and city greening fertilization, and the tree roots were not easily damaged and the fertilizer evenly distributed, which was conducive to nutrient absorption of root growth.Keywords: gas explosion subsoiling, fertigation, pneumatic chipping hammer exciting, soil compaction
Procedia PDF Downloads 21011569 Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction
Authors: S. Meguenni, A. Djahbar, K. Tounsi
Abstract:
Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000).Keywords: synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway traction
Procedia PDF Downloads 37411568 A GIS-Based Study on Geographical Divisions of Sustainable Human Settlements in China
Authors: Wu Yiqun, Weng Jiantao
Abstract:
The human settlements of China are picked up from the land use vector map by interpreting the Thematic Map of 2014. This paper established the sustainable human settlements geographical division evaluation system and division model using GIS. The results show that: The density of human residential areas in China is different, and the density of sustainable human areas is higher, and the west is lower than that in the West. The regional differences of sustainable human settlements are obvious: the north is larger than that the south, the plain regions are larger than those of the hilly regions, and the developed regions are larger than the economically developed regions. The geographical distribution of the sustainable human settlements is measured by the degree of porosity. The degree of porosity correlates with the sustainable human settlement density. In the area where the sustainable human settlement density is high the porosity is low, the distribution is even and the gap between the settlements is low.Keywords: GIS, geographical division, sustainable human settlements, China
Procedia PDF Downloads 60011567 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 20411566 Design of Demand Pacemaker Using an Embedded Controller
Authors: C. Bala Prashanth Reddy, B. Abhinay, C. Sreekar, D. V. Shobhana Priscilla
Abstract:
The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope.Keywords: missing R wave, PWM, demand pacemaker, heart
Procedia PDF Downloads 48211565 Security as Human Value: Issue of Human Rights in Indian Sub-Continental Operations
Authors: Pratyush Vatsala, Sanjay Ahuja
Abstract:
The national security and human rights are related terms as there is nothing like absolute security or absolute human right. If we are committed to security, human right is a problem and also a solution, and if we deliberate on human rights, security is a problem but also part of the solution. Ultimately, we have to maintain a balance between the two co-related terms. As more and more armed forces are being deployed by the government within the nation for maintaining peace and security, using force against its own citizen, the search for a judicious balance between intent and action needs to be emphasized. Notwithstanding that a nation state needs complete political independence; the search for security is a driving force behind unquestioned sovereignty. If security is a human value, it overlaps the value of freedom, order, and solidarity. Now, the question needs to be explored, to what extent human rights can be compromised in the name of security in Kashmir or Mizoram like places. The present study aims to explore the issue of maintaining a balance between the use of power and good governance as human rights, providing security as a human value. This paper has been prepared with an aim of strengthening the understanding of the complex and multifaceted relationship between human rights and security forces operating for conflict management and identifies some of the critical human rights issues raised in the context of security forces operations highlighting the relevant human rights principles and standards in which Security as human value be respected at all times and in particular in the context of security forces operations in India.Keywords: Kashmir, Mizoram, security, value, human right
Procedia PDF Downloads 28111564 The Effect of Artificial Intelligence on Human Rights Regulations
Authors: Karam Aziz Hamdy Fahmy
Abstract:
Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 6611563 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching
Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei
Abstract:
Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness
Procedia PDF Downloads 39011562 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: feature selection methods, machine learning, NB, one-class SVM, sentiment analysis, support vector machine
Procedia PDF Downloads 519