Search results for: modified simplex algorithm
1460 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 4991459 Jatropha curcas L. Oil Selectivity in Froth Flotation
Authors: André C. Silva, Izabela L. A. Moraes, Elenice M. S. Silva, Carlos M. Silva Filho
Abstract:
In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian’s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite’s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70’s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents Jatropha curcas L. oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%.Keywords: froth flotation, jatropha curcas, microflotation, selectivity
Procedia PDF Downloads 4371458 Information Literacy Among Faculty Members in the Medical Colleges of Khyber Pakhtunkhwa-Pakistan
Authors: Saeed Ullah Jan, Waheed Ullah Kha
Abstract:
Purpose of the study: This study aims to assess faculty members' information literacy skills in public sector medical colleges in Khyber Pakhtunkhwa. Design/Methodology/approach: The descriptive research design was used to conduct and accomplish the study's objectives. The research population consisted of faculty members at public sector medical colleges in Khyber Pakhtunkhwa southern region. Professors, Associate Professors, Assistant Professors, Lecturers, and demonstrators comprise the faculty. The adapted questionnaires were modified and used as data collection instruments. Key findings: The majority of the public sector medical college faculty recognizes the various sources of information, and they use both printed and online materials to identify needed information. The majority of faculty at these medical colleges consults monographs/textbooks regularly, preceded by online journals/medical databases. A good number of medical faculty members opted to use the HEC digital library to locate and access their contents. Delimitations of the study: This study is delimited to three public sector medical colleges operate in southern districts: Khyber Medical University Institute of Medical Sciences (KIMS) in Kohat, the Gomal Medical College (GMC) in Dera Ismail Khan, and the Bannu Medical College (BMC) in Bannu. Practical implication(s): The findings of the study will motivate the policymakers and authorities of these three medical colleges in the southern region of Khyber Pakhtunkhwa to enhance the information literacy skills of medical faculty. This practice will result in an effective medical education in the province. Contribution to the knowledge: No significant work has been done on the Faculty's Information literacy skills at public sector medical colleges in Khyber Pakhtunkhwa. This study will add valuable literature to the literary world.Keywords: information literacy skills-Khyber Pakhtunkhwa, information literacy skills-medical faculty-Khyber Pakhtunkhwa, medical sciences, information literacy, information-literacy-Pakistan
Procedia PDF Downloads 1081457 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3791456 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample
Procedia PDF Downloads 3211455 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT
Procedia PDF Downloads 4131454 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness
Procedia PDF Downloads 2591453 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 1931452 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes
Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari
Abstract:
The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech
Procedia PDF Downloads 1571451 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 1571450 Multidisciplinary Rehabilitation Algorithm after Mandibular Resection for Ameloblastoma
Authors: Joaquim de Almeida Dultra, Daiana Cristina Pereira Santana, Fátima Karoline Alves Araújo Dultra, Liliane Akemi Kawano Shibasaki, Mariana Machado Mendes de Carvalho, Ieda Margarida Crusoé Rocha Rebello
Abstract:
Defects originating from mandibular resections can cause significant functional impairment and facial disharmony, and they have complex rehabilitation. The aim of this report is to demonstrate the authors' experience facing challenging rehabilitation after mandibular resection in a patient with ameloblastoma. Clinical and surgical steps are described simultaneously, highlighting the adaptation of the final fixed prosthesis, reported in an unprecedented way in the literature. A 37-year-old male patient was seen after a sports accident, where a pathological fracture in the symphysis and left mandibular body was identified, where a large radiolucent lesion was found. The patient underwent resection, bone graft, distraction osteogenesis, rehabilitation with dental implants, prosthesis, and finally, orofacial harmonization, in an interval of six years. Rehabilitation should consider the patient's needs individually and should have as the main objective to provide similar aesthetics and function to that present before the disease. We also emphasize the importance of interdisciplinary work during the course of rehabilitation.Keywords: ameloblastoma, mandibular reconstruction, distraction osteogenesis, dental implants. dental prosthesis, implant-supported, treatment outcome
Procedia PDF Downloads 1171449 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers
Authors: R. M. S. Sachini Amararathne
Abstract:
This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer
Procedia PDF Downloads 981448 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design
Procedia PDF Downloads 5891447 Biospiral-Detect to Distinguish PrP Multimers from Monomers
Authors: Gulyas Erzsebet
Abstract:
The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.Keywords: diagnosis, ELISA, Prion, TSE
Procedia PDF Downloads 2531446 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System
Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano
Abstract:
The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers
Procedia PDF Downloads 3281445 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic
Authors: Biswajit Pal, Amit Mallik, Anil K. Barik
Abstract:
Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization
Procedia PDF Downloads 1891444 Advanced Lithium Recovery from Brine: 2D-Based Ion Selectivity Membranes
Authors: Nour S. Abdelrahman, Seunghyun Hong, Hassan A. Arafat, Daniel Choi, Faisal Al Marzooqi
Abstract:
Abstract—The advancement of lithium extraction methods from water sources, particularly saltwater brine, is gaining prominence in the lithium recovery industry due to its cost-effectiveness. Traditional techniques like recrystallization, chemical precipitation, and solvent extraction for metal recovery from seawater or brine are energy-intensive and exhibit low efficiency. Moreover, the extensive use of organic solvents poses environmental concerns. As a result, there's a growing demand for environmentally friendly lithium recovery methods. Membrane-based separation technology has emerged as a promising alternative, offering high energy efficiency and ease of continuous operation. In our study, we explored the potential of lithium-selective sieve channels constructed from layers of 2D graphene oxide and MXene (transition metal carbides and nitrides), integrated with surface – SO₃₋ groups. The arrangement of these 2D sheets creates interplanar spacing ranging from 0.3 to 0.8 nm, which forms a barrier against multivalent ions while facilitating lithium-ion movement through nano capillaries. The introduction of the sulfonate group provides an effective pathway for Li⁺ ions, with a calculated binding energy of Li⁺ – SO³⁻ at – 0.77 eV, the lowest among monovalent species. These modified membranes demonstrated remarkably rapid transport of Li⁺ ions, efficiently distinguishing them from other monovalent and divalent species. This selectivity is achieved through a combination of size exclusion and varying binding affinities. The graphene oxide channels in these membranes showed exceptional inter-cation selectivity, with a Li⁺/Mg²⁺ selectivity ratio exceeding 104, surpassing commercial membranes. Additionally, these membranes achieved over 94% rejection of MgCl₂.Keywords: ion permeation, lithium extraction, membrane-based separation, nanotechnology
Procedia PDF Downloads 771443 Randomness in Cybertext: A Study on Computer-Generated Poetry from the Perspective of Semiotics
Authors: Hongliang Zhang
Abstract:
The use of chance procedures and randomizers in poetry-writing can be traced back to surrealist works, which, by appealing to Sigmund Freud's theories, were still logocentrism. In the 1960s, random permutation and combination were extensively used by the Oulipo, John Cage and Jackson Mac Low, which further deconstructed the metaphysical presence of writing. Today, the randomly-generated digital poetry has emerged as a genre of cybertext which should be co-authored by readers. At the same time, the classical theories have now been updated by cybernetics and media theories. N· Katherine Hayles put forward the concept of ‘the floating signifiers’ by Jacques Lacan to be the ‘the flickering signifiers’ , arguing that the technology per se has become a part of the textual production. This paper makes a historical review of the computer-generated poetry in the perspective of semiotics, emphasizing that the randomly-generated digital poetry which hands over the dual tasks of both interpretation and writing to the readers demonstrates the intervention of media technology in literature. With the participation of computerized algorithm and programming languages, poems randomly generated by computers have not only blurred the boundary between encoder and decoder, but also raises the issue of human-machine. It is also a significant feature of the cybertext that the productive process of the text is full of randomness.Keywords: cybertext, digital poetry, poetry generator, semiotics
Procedia PDF Downloads 1791442 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona
Procedia PDF Downloads 4631441 Comparative Evaluation of the Effectiveness of Different Mindfulness-Based Interventions on Medically Unexplained Symptoms: A Systematic Review
Authors: R. R. Billones, N. Lukkahatai, L. N. Saligan
Abstract:
Mindfulness based interventions (MBIs) have been used in medically unexplained symptoms (MUS). This systematic review describes the literature investigating the general effect of MBIs on MUS and identifies the effects of specific MBIs on specific MUS conditions. The preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA) and the modified Oxford quality scoring system (JADAD) were applied to the review, yielding an initial 1,556 articles. The search engines included PubMed, ScienceDirect, Web of Science, Scopus, EMBASE, and PsychINFO using the search terms: mindfulness, or mediations, or mindful or MBCT or MBSR and medically unexplained symptoms or MUS or fibromyalgia or FMS. A total of 24 articles were included in the final systematic review. MBIs showed large effects on socialization skills for chronic fatigue syndrome (d=0.65), anger in fibromyalgia (d=0.61), improvement of somatic symptoms (d=1.6) and sleep (d=1.12) for painful conditions, physical health for chronic back pain (d=0.51), and disease intensity for irritable bowel disease/syndrome (d=1.13). A manualized MBI that applies the four fundamental elements present in all types of interventions were critical to efficacy. These elements were psycho-education sessions specific to better understand the medical symptoms, the practice of awareness, the non-judgmental observance of the experience at the moment, and the compassion to ones’ self. The effectiveness of different mindfulness interventions necessitates giving attention to improve the gaps that were identified related to home-based practice monitoring, competency training of mindfulness teachers, and sound psychometric properties to measure the mindfulness practice.Keywords: mindfulness-based interventions, medically unexplained symptoms, mindfulness-based cognitive therapy, mindfulness-based stress reduction, fibromyalgia, irritable bowel syndrome
Procedia PDF Downloads 1441440 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma
Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam
Abstract:
Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.Keywords: systems biology, ependymoma, deg, network analysis
Procedia PDF Downloads 3021439 Gender Based Variability Time Series Complexity Analysis
Authors: Ramesh K. Sunkaria, Puneeta Marwaha
Abstract:
Nonlinear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy Normal Sinus Rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.Keywords: heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy
Procedia PDF Downloads 2861438 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 1581437 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 1711436 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside
Authors: Benseghir Omar, Bahmed Mohamed
Abstract:
In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.Keywords: thermal transfer, mixed convection, square cavity, finite volume method
Procedia PDF Downloads 4361435 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 3231434 Following the Caravans: Interdisciplinary Study to Integrate Chinese and African Relations in Ethiopia
Authors: E. Mattio
Abstract:
The aim of this project is to study the Chinese presence in Ethiopia, following the path of the last salt caravans from Danakil to Tigray region. Official estimates of the number of Chinese in Africa vary widely; on the continent, there are increasingly diverse groups of Chinese migrants in terms of language, dialect, class, education, and employment. Based on this and on a very general state of the art, it was decided to increase the studies on this phenomenon, documenting the extraction of salt and following the sellers in the north of the country. The project is unique and allows you to admire a landscape that will soon change, due to the construction of infrastructure that is changing the dynamics of movement and sales. To carry out this study, interdisciplinary investigation methods were integrated, such as landscape archeology, historiographic research, participatory anthropology, geopolitics, and cultural anthropology and ethnology. There are two main objectives of the research. The first was an analysis of risk perceptions to predict what will happen to these populations and how the territory will be modified, trying to monitor the growth of infrastructure in the country and the effects it will have on the population. Thanks to the use of GIS, some roads created by Chinese companies that worked in the area have been georeferenced. The second point was to document the life and rituals of Ethiopian populations, in order not to lose the aspects of uniqueness that risk being lost. The local interviews have garnered impressions and criticisms from the local population to understand whether the Chinese presence is perceived as a threat or a solution. Among the most exclusive interviews, there are those made to Afar leaders in the Logya area and some Coptic representatives in the Wukro area. To make this project even more unique, the Coptic rituals of Gennà and Timkat have been documented, unique expressions of a millennial tradition. The aim was to understand whether the Maoist presence began to influence the religious rites and forms of belief present in the country.Keywords: China, Ethiopia, GIS, risk perceptions
Procedia PDF Downloads 1621433 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 791432 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3101431 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT
Procedia PDF Downloads 482