Search results for: aggregated energy storage system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24045

Search results for: aggregated energy storage system

19605 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 257
19604 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 79
19603 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 559
19602 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 248
19601 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 348
19600 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.

Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution

Procedia PDF Downloads 320
19599 Soil Sensibility Characterization of Granular Soils Due to Suffusion

Authors: Abdul Rochim, Didier Marot, Luc Sibille

Abstract:

This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.

Keywords: erodimeter, sandy gravel, suffusion, water seepage energy

Procedia PDF Downloads 431
19598 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 975
19597 Neuroplasticity: A Fresh Begining for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 479
19596 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 434
19595 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 150
19594 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 245
19593 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles

Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack

Abstract:

Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.

Keywords: electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests

Procedia PDF Downloads 424
19592 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 498
19591 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 273
19590 Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair: A Case of Automobile

Authors: Adedeji W. Oyediran, Yekini N. Asafe

Abstract:

Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for automobile users.

Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community

Procedia PDF Downloads 489
19589 Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh

Authors: H. M. Nuralam, Z. Xiao-lan, B. K. Dubey, D. Wen-Chuan

Abstract:

Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW.

Keywords: awareness, disposal, Dhaka city, healthcare waste management, waste generation

Procedia PDF Downloads 310
19588 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 333
19587 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix

Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod

Abstract:

In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.

Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX

Procedia PDF Downloads 592
19586 Sediment Transport Monitoring in the Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando

Abstract:

The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.

Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,

Procedia PDF Downloads 215
19585 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 50
19584 The Use of Food Industry Bio-Products for Sustainable Lactic Acid Bacteria Encapsulation

Authors: Paulina Zavistanaviciute, Vita Krungleviciute, Elena Bartkiene

Abstract:

Lactic acid bacteria (LAB) are microbial supplements that increase the nutritional, therapeutic, and safety value of food and feed. Often LAB strains are incubated in an expensive commercially available de Man-Rogosa-Sharpe (MRS) medium; the cultures are centrifuged, and the cells are washing with sterile water. Potato juice and apple juice industry bio-products are industrial wastes which may constitute a source of digestible nutrients for microorganisms. Due to their low cost and good chemical composition, potato juice and apple juice production bio- products could have a potential application in LAB encapsulation. In this study, pure LAB (P. acidilactici and P. pentosaceus) were multiplied in a crushed potato juice and apple juice industry bio-products medium. Before using, bio-products were sterilized and filtered. No additives were added to mass, except apple juice industry bioproducts were diluted with sterile water (1/5; v/v). The tap of sterilised mass, and LAB cell suspension (5 mL), containing of 8.9 log10 colony-forming units (cfu) per mL of the P. acidilactici and P. pentosaceus was used to multiply the LAB for 72 h. The final colony number in the potato juice and apple juice bio- products substrate was on average 9.60 log10 cfu/g. In order to stabilize the LAB, several methods of dehydration have been tested: lyophilisation (MilrockKieffer Lane, Kingston, USA) and dehydration in spray drying system (SD-06, Keison, Great Britain). Into the spray drying system multiplied LAB in a crushed potato juice and apple juice bio-products medium was injected in peristaltic way (inlet temperature +60 °C, inlet air temperature +150° C, outgoing air temperature +80 °C, air flow 200 m3/h). After lyophilisation (-48 °C) and spray drying (+150 °C) the viable cell concentration in the fermented potato juice powder was 9.18 ± 0.09 log10 cfu/g and 9.04 ± 0.07 log10 cfu/g, respectively, and in apple mass powder 8.03 ± 0.04 log10 cfu/g and 7.03 ± 0.03 log10 cfu/g, respectively. Results indicated that during the storage (after 12 months) at room temperature (22 +/- 2 ºC) LAB count in dehydrated products was 5.18 log10 cfu/g and 7.00 log10 cfu/g (in spray dried and lyophilized potato juice powder, respectively), and 3.05 log10 cfu/g and 4.10 log10 cfu/g (in spray dried and lyophilized apple juice industry bio-products powder, respectively). According to obtained results, potato juice could be used as alternative substrate for P. acidilactici and P. pentosaceus cultivation, and by drying received powders can be used in food/feed industry as the LAB starters. Therefore, apple juice industry by- products before spray drying and lyophilisation should be modified (i. e. by using different starches) in order to improve its encapsulation.

Keywords: bio-products, encapsulation, lactic acid bacteria, sustainability

Procedia PDF Downloads 265
19583 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products

Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto

Abstract:

An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.

Keywords: TDLAS, carbon dioxide, cups, headspace, measurement

Procedia PDF Downloads 303
19582 Identify and Prioritize the Sustainable Development of Sports Venues Using New and Degradable Energies with a Hierarchical Analysis Approach

Authors: Mahsaossadat Pourrahmati Khelejan

Abstract:

The purpose of this research was to identify and prioritize the sustainable development of sports venues using new and degradable energies with using the AHP Hierarchical Analysis approach. The research method is a descriptive strategy with regard to the direction of implementation and is a hierarchical research with a practical purpose. In this study, 30 experts (physical education faculty members, geography professors, accredited sports venues managers, and renewable energy engineers) were selected using purposeful sampling method as the research population. The research tool was a researcher-made questionnaire on the factors affecting the sustainable development of sports venues by using new technologies and degradable energy. Finally, the research questionnaire was designed with four components and 21 items. All steps were performed by using Expert Choice software. The importance of indicators that influence the sustainable development of sports venues is highlighted by the use of clean and degradable energy, for example: 1. Economic factor, weighing 0.420 2. Environmental index, weighing 0. 320 3. Physical index, weighing 0.148 4. Social index, weighing 0.122.

Keywords: Sports Venues, Sustainable Development, Degradable Energies, Prioritize

Procedia PDF Downloads 121
19581 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 558
19580 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 642
19579 Probabilistic Modeling Laser Transmitter

Authors: H. S. Kang

Abstract:

Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.

Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations

Procedia PDF Downloads 416
19578 Protection of Television Programme Formats in Comparative Law

Authors: Mustafa Arikan, Ibrahim Ercan

Abstract:

In this paper, protection of program formats was investigated in terms of program formats. Protection of program formats was studied in the French Law in the sense of competition law and CPI. Since the English Judicial system exhibits differences from the legal system of Continental Europe, its investigation bears a special significance. The subject was also handled in German Law at length. Indeed, German Law was investigated in detail within the overall framework of the study. Here, the court decisions in the German Law and the views in the doctrine were expressed in general. There are many court decisions in the American legal system concerning the subject. These decisions also present alternatives in terms of a solution to the problem.

Keywords: comparative law, protection of television programme formats, intellectual property, american legal system

Procedia PDF Downloads 314
19577 A Review on Design and Analysis of Structure Against Blast Forces

Authors: Akshay Satishrao Kawtikwar

Abstract:

The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.

Keywords: blast resistant design, blast load, explosion, ETABS

Procedia PDF Downloads 83
19576 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter

Procedia PDF Downloads 144