Search results for: vertical flow constructed wetland
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7244

Search results for: vertical flow constructed wetland

2834 Microfacies Analysis, Depositional Environment, and Diagentic Process of the Antalo Limestone Successions in the Mekelle Outlier (Hagere-Selam, Messobo and Wukro Sections), Northern Ethiopia

Authors: Werede Girmay Tesfasilasiea

Abstract:

Three stratigraphic sections of the Antalo Limestone successions in Mekelle Outlier, northern Ethiopia (at Hagere-Selam, Messobo, and Wukro sections) have been investigated to distinguish their microfacies features, reservoir characterization, and their equivalent depositional environments. The Antalo Limestone successions were deposited in the Mekelle Outlier during the Upper Jurassic period as a result of flooding of the area by the Tethys Ocean toward the southeast direction. This study is based on field description and petrographic analysis to determine the depositional environment, age, and reservoir characteristics of the carbonate units. According to petrographical studies of 100 thin sections and field investigation, 14 microfacies types are recognized. These are grouped into 4 microfacies association of a tidal flat (MFT1-2), lagoons (MFL1-2), shoal (MFS1-4), and open marine environment (MFO1-6). Hence, the Antalo limestone successions are deposited in shallow carbonate ramps with a wide lateral and vertical distribution of facies. The carbonate units in the studied sections are affected by bioturbation, micritization, cementation, dolomitization, dissolution, silicification, and compaction type of early diagenetic alteration. Dissolution and dolomitization affected the type of rock, showing good reservoir quality, while cementation and compaction affected the type of rock, resulting in poor reservoir quality in the Antalo Limestone successions of the Mekelle outlier. Based on the abundant distribution of the Alveosepta jaccardi (Schrodt), Pseudocyclammina lituus (Yokoyama), Kurnubia palestiniensis (Henson), and Somalirhynchia africana in the studied sections the Antalo Limestone successions assigned to the Late Oxfordian-Kimmeridgian age.

Keywords: Antelo limestone successions, depositional environment, Mekelle outlier, microfacies analysis, diagenesis, reservoir quality

Procedia PDF Downloads 45
2833 Effect of Using Baffles Inside Spiral Micromixer

Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons

Abstract:

Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.

Keywords: CFD, micromixer, microfluidics, spiral, reynolds number

Procedia PDF Downloads 84
2832 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters

Procedia PDF Downloads 191
2831 Geothermal Energy Potential Estimates of Niger Delta Basin from Recent Studies

Authors: Olumide J. Adedapo

Abstract:

In this work, geothermal energy resource maps of the Niger Delta Basin were constructed using borehole thermal log data from over 300 deep wells. Three major geothermal anomalies were delineated and quantitatively interpreted in both onshore and offshore parts of the Niger Delta. The geothermal maps present the distribution of geothermal energy stored in the sedimentary rock mass in two ways: the accessible resources in depth interval 0-4000 m and static geothermal energy resources stored in the complete sedimentary infill of the basin (from the ground surface to the basement). The first map shows two major onshore anomalies, one in the north (with maximum energy values, 800 GJ/m2), another in the east to northeastern part (maximum energy values of 1250–1500 GJ/m2). Another two major anomalies occur offshore, one in the south with values of 750-1000 GJ/m2, occurring at about 100 km seawards and the other, in the southwest offshore with values 750-1250 GJ/m2, still at about 100 km from the shore. A second map of the Niger Delta shows a small anomaly in the northern part with the maximum value of 1500 GJ/m2 and a major anomaly occurring in the eastern part of the basin, onshore, with values of 2000-3500 GJ/m2. Offshore in the south and southwest anomalies in the total sedimentary rock mass occur with highest values up to 4000GJ/m2, with the southwestern anomaly extending west to the shore. It is much of interest to note the seaward–westward extension of these anomalies both in size, configuration, and magnitude for the geothermal energy in the total sedimentary thickness to the underlying basement. These anomalous fields show the most favourable locations and areas for further work on geothermal energy resources.

Keywords: geothermal energy, offshore, Niger delta, basin

Procedia PDF Downloads 209
2830 Next Generation Sequencing Analysis of Circulating MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Khalda Amr, Noha Eltaweel, Sherif Ismail, Hala Raslan

Abstract:

Introduction: Osteoarthritis is the most common form of arthritis that involves the wearing away of the cartilage that caps the bones in the joints. While rheumatoid arthritis is an autoimmune disease in which the immune system attacks the joints, beginning with the lining of joints. In this study, we aimed to study the top deregulated miRNAs that might be the cause of pathogenesis in both diseases. Methods: Eight cases were recruited in this study: 4 rheumatoid arthritis (RA), 2 osteoarthritis (OA) patients, as well as 2 healthy controls. Total RNA was isolated from plasma to be subjected to miRNA profiling by NGS. Sequencing libraries were constructed and generated using the NEBNextR UltraTM small RNA Sample Prep Kit for Illumina R (NEB, USA), according to the manufacturer’s instructions. The quality of samples were checked using fastqc and multiQC. Results were compared RA vs Controls and OA vs. Controls. Target gene prediction and functional annotation of the deregulated miRNAs were done using Mienturnet. The top deregulated miRNAs in each disease were selected for further validation using qRT-PCR. Results: The average number of sequencing reads per sample exceeded 2.2 million, of which approximately 57% were mapped to the human reference genome. The top DEMs in RA vs controls were miR-6724-5p, miR-1469, miR-194-3p (up), miR-1468-5p, miR-486-3p (down). In comparison, the top DEMs in OA vs controls were miR-1908-3p, miR-122b-3p, miR-3960 (up), miR-1468-5p, miR-15b-3p (down). The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Six of the deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis. Conclusion: Six of our studied deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) might be highly involved in the disease pathogenesis. Further functional studies are crucial to assess their functions and actual target genes.

Keywords: next generation sequencing, mirnas, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 81
2829 Brazil's Olympian Tragedy: Searching for Citizenship in Vila Autodromo

Authors: Rachel K. Cremona

Abstract:

Forty years ago, Vila Autodromo was a small fishing settlement in southwest Rio de Janeiro. By 2012, Vila Autodromo had established itself into a working class neighborhood – certainly not a slum, but nonetheless designated as a ‘favela’ as a consequence of its history as an illegal settlement that was thus never provided with public services. Vila Autodromo sits on a large lagoon, adjacent to the Olympic Park being constructed for the 2016 Olympic Games to be held in Rio, and looks out over the expensive high rise condominiums that have sprouted across the water. In 2009, when Rio submitted their bid for the Olympic games, there were approximately 900 families that called Vila Autodromo home, and the original plans for the games clearly show their homes remaining in place. Today, only a handful of these homes remain. This paper will utilize the case study of Vila Autodromo to examine the broader issue of Favelas in 21st century Rio de Janeiro. While race and poverty have become synonymous with Brazil’s inegalitarian social order – and personified by the thousands of favelas scattered in and around large cities like Rio and Sao Paulo – much less attention has been given to the political status of the nation’s invisible majority. In particular, this research will examine the question of citizenship and argue that the most fundamental problem of inequality in Brazil is not simply a product of history, race and social order, but more specifically a problem of ‘personhood’. The political marginalization of Brazil’s poor does not simply reinforce their social marginalization, it institutionalizes it in a way that makes it almost impossible to escape. The story of Vila Autodromo captures this problem in a way that not only illustrates the clear (though ambiguous) role of the state in the perpetuation of Brazil’s underclass, but also the human resilience that it has fostered.

Keywords: citizenship, poverty, displacement, favela

Procedia PDF Downloads 429
2828 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 83
2827 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 512
2826 Field Evaluation of Concrete Using Hawaiian Aggregates for Alkali Silica Reaction

Authors: Ian N. Robertson

Abstract:

Alkali Silica Reaction (ASR) occurs in concrete when the alkali hydroxides (Na, K and OH) from the cement react with unstable silica, SiO2, in some types of aggregate. The gel that forms during this reaction will expand when it absorbs water, potentially leading to cracking and overall expansion of the concrete. ASR has resulted in accelerated deterioration of concrete highways, dams and other structures that are exposed to moisture during their service life. Concrete aggregates available in Hawaii have not demonstrated a history of ASR, however, accelerated laboratory tests using ASTM 1260 indicated a potential for ASR with some aggregates. Certain clients are now requiring import of aggregates from the US mainland at great expense. In order to assess the accuracy of the laboratory test results, a long-term field study of the potential for ASR in concretes made with Hawaiian aggregates was initiated in 2011 with funding from the US Federal Highway Administration and Hawaii Department of Transportation. Thirty concrete specimens were constructed of various concrete mixtures using aggregates from all Hawaiian aggregate sources, and some US mainland aggregates known to exhibit ASR expansion. The specimens are located in an open field site in Manoa valley on the Hawaiian Island of Oahu, exposed to relatively high humidity and frequent rainfall. A weather station at the site records the ambient conditions on a continual basis. After two years of monitoring, only one of the Hawaiian aggregates showed any sign of expansion. Ten additional specimens were fabricated with this aggregate to confirm the earlier observations. Admixtures known to mitigate ASR, such as fly ash and lithium, were included in some specimens to evaluate their effect on the concrete expansion. This paper describes the field evaluation program and presents the results for all forty specimens after four years of monitoring.

Keywords: aggregate, alkali silica reaction, concrete durability, field exposure

Procedia PDF Downloads 241
2825 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 84
2824 Modelling Urban Rigidity and Elasticity Growth Boundaries: A Spatial Constraints-Suitability Based Perspective

Authors: Pengcheng Xiang Jr., Xueqing Sun, Dong Ngoduy

Abstract:

In the context of rapid urbanization, urban sprawl has brought about extensive negative impacts on ecosystems and the environment, resulting in a gradual shift from "incremental growth" to ‘stock growth’ in cities. A detailed urban growth boundary is a prerequisite for urban renewal and management. This study takes Shenyang City, China, as the study area and evaluates the spatial distribution of urban spatial suitability in the study area from the perspective of spatial constraints-suitability using multi-source data and simulates the future rigid and elastic growth boundaries of the city in the study area using the CA-Markov model. The results show that (1) the suitable construction area and moderate construction area in the study area account for 8.76% and 19.01% of the total area, respectively, and the suitable construction area and moderate construction area show a trend of distribution from the urban centre to the periphery, mainly in Shenhe District, the southern part of Heping District, the western part of Dongling District, and the central part of Dadong District; (2) the area of expansion of construction land in the study area in the period of 2023-2030 is 153274.6977hm2, accounting for 44.39% of the total area of the study area; (3) the rigid boundary of the study area occupies an area of 153274.6977 hm2, accounting for 44.39% of the total area of the study area, and the elastic boundary of the study area contains an area of 75362.61 hm2, accounting for 21.69% of the total area of the study area. The study constructed a method for urban growth boundary delineation, which helps to apply remote sensing to guide future urban spatial growth management and urban renewal.

Keywords: urban growth boundary, spatial constraints, spatial suitability, urban sprawl

Procedia PDF Downloads 24
2823 The First Japanese-Japanese Dictionary for Non-Japanese Using the Defining Vocabulary

Authors: Minoru Moriguchi

Abstract:

This research introduces the concept of a monolingual Japanese dictionary for non-native speakers of Japanese, whose temporal title is Dictionary of Contemporary Japanese for Advanced Learners (DCJAL). As the language market is very small compared with English, a monolingual Japanese dictionary for non-native speakers, containing sufficient entries, has not been published yet. In such a dictionary environment, Japanese-language learners are using bilingual dictionaries or monolingual Japanese dictionaries for Japanese people. This research started in 2017, as a project team which consists of four Japanese and two non-native speakers, all of whom are linguists of the Japanese language. The team has been trying to propose the concept of a monolingual dictionary for non-native speakers of Japanese and to provide the entry list, the definition samples, the list of defining vocabulary, and the writing manual. As the result of seven-year research, DCJAL has come to have 28,060 head words, 539 entry examples, 4,598-word defining vocabulary, and the writing manual. First, the number of the entry was determined as about 30,000, based on an experimental method using existing six dictionaries. To make the entry list satisfying this number, words suitable for DCJAL were extracted from the Tsukuba corpus of the Japanese language, and later the entry list was adjusted according to the experience as Japanese instructor. Among the head words of the entry list, 539 words were selected and added with lexicographical information such as proficiency level, pronunciation, writing system (hiragana, katakana, kanji, or alphabet), definition, example sentences, idiomatic expression, synonyms, antonyms, grammatical information, sociolinguistic information, and etymology. While writing the definition of the above 539 words, the list of the defining vocabulary was constructed, based on frequent vocabulary used in a Japanese monolingual dictionary. Although the concept of DCJAL has been almost perfected, it may need some more adjustment, and the research is continued.

Keywords: monolingual dictionary, the Japanese language, non-native speaker of Japanese, defining vocabulary

Procedia PDF Downloads 36
2822 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 304
2821 Stochastic Response of an Airfoil and Its Effects on Limit Cycle Oscillations’ Behavior under Stall Flutter Regime

Authors: Ketseas Dimitris

Abstract:

In this work, we investigate the effect of noise on a classical two-degree-of-freedom pitch-plunge aeroelastic system. The inlet velocity of the flow is modelled as a stochastically varying parameter by the Ornstein-Uhlenbeck (OU) stochastic process. The system is a 2D airfoil, and the elastic problem is simulated using linear springs. We study the manifestation of Limit Cycle Oscillations (LCO) that correspond to the varying fluid velocity under the dynamic stall regime. We aim to delve into the unexplored facets of the classical pitch-plunge aeroelastic system, seeking a comprehensive understanding of how parametric noise influences the occurrence of LCO and expands the boundaries of its known behavior.

Keywords: aerodynamics, aeroelasticity, computational fluid mechanics, stall flutter, stochastical processes, limit cycle oscillation

Procedia PDF Downloads 55
2820 Looking beyond Lynch's Image of a City

Authors: Sandhya Rao

Abstract:

Kevin Lynch’s Theory on Imeageability, let on explore a city in terms of five elements, Nodes, Paths, Edges, landmarks and Districts. What happens when we try to record the same data in an Indian context? What happens when we apply the same theory of Imageability to a complex shifting urban pattern of the Indian cities and how can we as Urban Designers demonstrate our role in the image building ordeal of these cities? The organizational patterns formed through mental images, of an Indian city is often diverse and intangible. It is also multi layered and temporary in terms of the spirit of the place. The pattern of images formed is loaded with associative meaning and intrinsically linked with the history and socio-cultural dominance of the place. The embedded memory of a place in one’s mind often plays an even more important role while formulating these images. Thus while deriving an image of a city one is often confused or finds the result chaotic. The images formed due to its complexity are further difficult to represent using a single medium. Under such a scenario it’s difficult to derive an output of an image constructed as well as make design interventions to enhance the legibility of a place. However, there can be a combination of tools and methods that allows one to record the key elements of a place through time, space and one’s user interface with the place. There has to be a clear understanding of the participant groups of a place and their time and period of engagement with the place as well. How we can translate the result obtained into a design intervention at the end, is the main of the research. Could a multi-faceted cognitive mapping be an answer to this or could it be a very transient mapping method which can change over time, place and person. How does the context influence the process of image building in one’s mind? These are the key questions that this research will aim to answer.

Keywords: imageability, organizational patterns, legibility, cognitive mapping

Procedia PDF Downloads 309
2819 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines

Authors: Arturo Daag

Abstract:

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.

Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction

Procedia PDF Downloads 194
2818 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 500
2817 Pollutant Dispersion in Coastal Waters

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

This paper spots light on the effect of a point source pollution on streams, stemming out from intentional release caused by unconscious facts. The consequences of such contamination on ecosystems are very serious. Accordingly, effective tools are highly demanded in this respect, which enable us to come across an accurate progress of pollutant and anticipate different measures to be applied in order to limit the degradation of the environmental surrounding. In this context, we are eager to model a pollutant dispersion of a free surface flow which is ejected by an outfall sewer of an urban sewerage network in coastal water taking into account the influence of climatic parameters on the spread of pollutant. Numerical results showed that pollutant dispersion is merely due to the presence of vortices and turbulence. Hence, it was realized that the pollutant spread in seawater is strongly correlated with climatic conditions in this region.

Keywords: coastal waters, numerical simulation, pollutant dispersion, turbulent flows

Procedia PDF Downloads 506
2816 Structural Integrity Analysis of Baffle Former Assembly in Pressurized Water Reactors Considering Irradiation Aging

Authors: Jong-Sung Kim, Myung-Jo Jhung

Abstract:

BFA is one of the reactor internals components in PWR. The BFA has the intended functions to support fuel assembly, to keep structural integrity of upper/lower core support structures, and to secure reactor coolant flow path. Failure of the BFA may give rise to significant effect on reactor safety operation and stop. The BFA is subject to relatively high neutron irradiation dose due to location close to the core. Therefore, IASCC can occur on the BFA due to damage accumulation as operating year increases. In this study, IASCC susceptibility on the BFA was assessed via the FEA considering variations of mechanical material behaviors with neutron irradiation. As a result of the assessment, some points have susceptibility more than 0.2 to IASCC during design lifetime.

Keywords: baffle former assembly, finite element analysis, irradiation aging, nuclear power plant, pressurized water reactor

Procedia PDF Downloads 354
2815 Gas Holdups in a Gas-Liquid Upflow Bubble Column With Internal

Authors: C. Milind Caspar, Valtonia Octavio Massingue, K. Maneesh Reddy, K. V. Ramesh

Abstract:

Gas holdup data were obtained from measured pressure drop values in a gas-liquid upflow bubble column in the presence of string of hemispheres promoter internal. The parameters that influenced the gas holdup are gas velocity, liquid velocity, promoter rod diameter, pitch and base diameter of hemisphere. Tap water was used as liquid phase and nitrogen as gas phase. About 26 percent in gas holdup was obtained due to the insertion of promoter in in the present study in comparison with empty conduit. Pitch and rod diameter have not shown any influence on gas holdup whereas gas holdup was strongly influenced by gas velocity, liquid velocity and hemisphere base diameter. Correlation equation was obtained for the prediction of gas holdup by least squares regression analysis.

Keywords: bubble column, gas-holdup, two-phase flow, turbulent promoter

Procedia PDF Downloads 102
2814 Food Security in the Middle East and North Africa

Authors: Sara D. Garduno-Diaz, Philippe Y. Garduno-Diaz

Abstract:

To date, one of the few comprehensive indicators for the measurement of food security is the Global Food Security Index. This index is a dynamic quantitative and qualitative bench marking model, constructed from 28 unique indicators, that measures drivers of food security across both developing and developed countries. Whereas the Global Food Security Index has been calculated across a set of 109 countries, in this paper we aim to present and compare, for the Middle East and North Africa (MENA), 1) the Food Security Index scores achieved and 2) the data available on affordability, availability, and quality of food. The data for this work was taken from the latest (2014) report published by the creators of the GFSI, which in turn used information from national and international statistical sources. According to the 2014 Global Food Security Index, MENA countries rank from place 17/109 (Israel, although with resent political turmoil this is likely to have changed) to place 91/109 (Yemen) with household expenditure spent in food ranging from 15.5% (Israel) to 60% (Egypt). Lower spending on food as a share of household consumption in most countries and better food safety net programs in the MENA have contributed to a notable increase in food affordability. The region has also however experienced a decline in food availability, owing to more limited food supplies and higher volatility of agricultural production. In terms of food quality and safety the MENA has the top ranking country (Israel). The most frequent challenges faced by the countries of the MENA include public expenditure on agricultural research and development as well as volatility of agricultural production. Food security is a complex phenomenon that interacts with many other indicators of a country’s well-being; in the MENA it is slowly but markedly improving.

Keywords: diet, food insecurity, global food security index, nutrition, sustainability

Procedia PDF Downloads 350
2813 Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver

Authors: Win Zaw Hein, Khin Sandar Linn, Su Su Yi Mon, Yoshitaka Goto

Abstract:

The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement.

Keywords: ionosphere, global positioning system, GPS, ionospheric delay, total electron content, TEC

Procedia PDF Downloads 129
2812 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 169
2811 Optimization of HfO₂ Deposition of Cu Electrode-Based RRAM Device

Authors: Min-Hao Wang, Shih-Chih Chen

Abstract:

Recently, the merits such as simple structure, low power consumption, and compatibility with complementary metal oxide semiconductor (CMOS) process give an advantage of resistive random access memory (RRAM) as a promising candidate for the next generation memory, hafnium dioxide (HfO2) has been widely studied as an oxide layer material, but the use of copper (Cu) as both top and bottom electrodes has rarely been studied. In this study, radio frequency sputtering was used to deposit the intermediate layer HfO₂, and electron beam evaporation was used. For the upper and lower electrodes (cu), using different AR: O ratios, we found that the control of the metal filament will make the filament widely distributed, causing the current to rise to the limit current during Reset. However, if the flow ratio is controlled well, the ON/OFF ratio can reach 104, and the set voltage is controlled below 3v.

Keywords: RRAM, metal filament, HfO₂, Cu electrode

Procedia PDF Downloads 47
2810 Relationship between Interfacial Instabilities and Mechanical Strength of Multilayer Symmetric Polymer Melts

Authors: Mohammad Ranjbaran Madiseh

Abstract:

In this research, an experimental apparatus has been developed for observing interfacial stability and deformation of multilayer pressure-driven channel flows. The interface instability of the co-extrusion flow of polyethylene and polypropylene is studied experimentally in a slit geometry. By investigating the growing interfacial wave (IW) and tensile stress of extrudate samples, a relationship between interfacial instability (II) and mechanical properties of polypropylene (PP) and high-density polyethylene (HDPE) has been established. It is shown that the mechanism of interfacial strength is related to interfacial instabilities as well as interfacial strength. It is shown that there is an ability to forecast the quality of final products in the co-extrusion process. In this study, it is found that the instability is controlled by its dominant wave number, which is associated with maximum tensile stress at the interface.

Keywords: interfacial instability, interfacial strength, wave number, interfacial wave

Procedia PDF Downloads 88
2809 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 220
2808 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: ceramic membrane, edible oil, microfiltration, wastewater

Procedia PDF Downloads 290
2807 Olefin and Paraffin Separation Using Simulations on Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.

Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent

Procedia PDF Downloads 438
2806 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material

Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan

Abstract:

The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.

Keywords: infrared non-destructive, thermal insulation material, reliability, connection

Procedia PDF Downloads 376
2805 Study of Divalent Phosphate Iron-Oxide Precursor Recycling Technology

Authors: Shinn-Dar Wu

Abstract:

This study aims to synthesize lithium iron phosphate cathode material using a recycling technology involving non-protective gas calcination. The advantages include lower cost and easier production than traditional methods that require a large amount of protective gas. The novel technology may have extensive industrial applications. Given that the traditional gas calcination has a large number of protection free Fe3+ production, this study developed a precursor iron phosphate (Fe2+) material recycling technology and conducted related tests and analyses. It focused on flow field design of calcination and new technology as well as analyzed the best conditions for powder calcination combination. The electrical properties were determined by button batteries and exhibited a capacity of 118 mAh/g (The use of new materials synthesis, capacitance is about 122 mAh/g). The cost reduced to 50% of the original.

Keywords: lithium battery, lithium iron phosphate, calcined technology, recycling technology

Procedia PDF Downloads 462