Search results for: microbial food safety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7490

Search results for: microbial food safety

3080 Risk Management and Security Practice in Customs Supply Chain: Application of Cross ABC Method to the Moroccan Customs

Authors: Lamia Hammadi, Abdellah Ait Ouhman, Aomar Ibourk

Abstract:

It is widely assumed that the case of Customs Supply Chain is classified as a complex system, due to not only the variety and large number of actors, but also their complex structural links, and the interactions between these actors, that’s why this system is subject to various types of Risks. The economic, political and social impacts of those risks are highly detrimental to countries, businesses and the public, for this reason, Risk management in the customs supply chain is becoming a crucial issue to ensure the sustainability, security and safety. The main characteristic of customs risk management approach is determining which goods and means of transport should be examined? To what extend? And where future compliance resources should be directed? The purposes of this article are, firstly to deal with the concept of customs supply chain, secondly present our risk management approach based on Cross Activity Based Costing (ABC) Method as an interactive tool to support decision making in customs risk management. Finally, analysis of case study of Moroccan customs to putting theory into practice and will thus draw together the various elements of a structured and efficient risk management approach.

Keywords: cross ABC method, customs supply chain, risk, risk management

Procedia PDF Downloads 380
3079 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)

Authors: Shahenaz Sidi, S. K. Tank

Abstract:

When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.

Keywords: Brownfield, phytoextraction, helianthus, oil, commercial

Procedia PDF Downloads 338
3078 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel

Authors: M. El-haj, Z. Olama, H. Holail

Abstract:

Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.

Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi

Procedia PDF Downloads 411
3077 Microbiological Assessment of Soft Cheese (Wara), Raw Milk and Dairy Drinking Water from Selected Farms in Ido, Ibadan, Nigeria

Authors: Blessing C. Nwachukwu, Michael O. Taiwo, Wasiu A. Abibu, Isaac O. Ayodeji

Abstract:

Milk is an important source of micro and macronutrients for humans. Soft Cheese (Wara) is an example of a by-product of milk. In addition, water is considered as one of the most vital resources in cattle farms. Due to the high consumption rate of milk and soft cheese and the traditional techniques involved in their production in Nigeria, there was a need for a microbiological assessment which will be of utmost public health importance. The study thus investigated microbial risk assessments associated with consumption of milk and soft cheese (Wara). It also investigated common pathogens present in dairy water in farms and antibiotic sensitivity profiling for implicated pathogens were conducted. Samples were collected from three different Fulani dairy herds in Ido local government, Ibadan, Oyo State, Nigeria and subjected to microbiological evaluation and antimicrobial susceptibility testing. Aspergillus flavus was the only isolated fungal isolate from Wara while Staphylococcus aureus, Vibro cholera, Hafnia alvei, Proteus mirabilis, Escherishia coli, Psuedomonas aeuroginosa, Citrobacter freundii, and Klebsiella pneumonia were the bacteria genera isolated from Wara, dairy milk and dairy drinking water. Bacterial counts from Wara from the three selected farms A, B and C were 3.5×105 CFU/ml, 4.0×105 CFU/ml and 5.3×105 CFU/ml respectively while the fungal count was 3CFU/100µl. The total bacteria count from dairy milk from the three selected farms A, B and C were Farms 2.0 ×105 CFU/ml, 3.5 × 105 CFU/ml and 6.5 × 105 CFU/ml respectively. 1.4×105 CFU/ml, 1.9×105 CFU/ml and 4.9×105 CFU/ml were the recorded bacterial counts from dairy water from farms A, B and C respectively. The highest antimicrobial resistance of 100% was recorded in Wara with Enrofloxacin, Gentamycin, Cefatriaxone and Colistin. The highest antimicrobial susceptibility of 100% was recorded in Raw milk with Enrofloxacin and Gentamicin. Highest antimicrobial intermediate response of 100% was recorded in Raw milk with Streptomycin. The study revealed that most of the cheeses sold at Ido local Government are contaminated with pathogens. Further research is needed on standardizing the production method to prevent pathogens from gaining access. The presence of bacteria in raw milk indicated contamination due to poor handling and unhygienic practices. Thus, drinking unpasteurized milk is hazardous as it increases the risk of zoonoses. Also, the Provision of quality drinking water is crucial for optimum productivity of dairy. Health education programs aiming at increasing awareness of the importance of clean water for animal health will be helpful.

Keywords: dairy, raw milk, soft cheese, Wara

Procedia PDF Downloads 183
3076 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery

Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman

Abstract:

Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.

Keywords: CGA, IPv6, NDP, SEND

Procedia PDF Downloads 386
3075 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 536
3074 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 400
3073 Binding of Avian Excreta-Derived Enteroccoci to a Streptococcocus mutans: Implications for Avian to Human Transmission

Authors: Richard K. Jolley, Jonathan A. Coffman

Abstract:

Since Enterococci has been implicated in oral disease, we hypothesized the transmission of avian Enterococci to humans via fecal-oral transmission facilitated by adherence to dental plaque. To demonstrate the capability of Enterococci to bind to a dental plaque we filtered avian excreta and incubated the filtrate on a sucrose-induced, Streptococcus mutans biofilm. The biofilm was washed several times with a detergent to remove bacteria binding non-specifically to the biofilm, DNA was isolated from the biofilm, 16S rDNA was amplified, sequenced by Ion Torrent DNA sequencing and analyzed with bioinformatics. Enterococci and other known bacterial pathogens were shown to adhere to the biofilm. Culturing the washed biofilm with Bile Esculin Azide (BEA) agar also confirmed the presence of Enterococci as verified with Sanger sequencing. The results suggest that Enteroccoci in avian excreta has the ability to adhere to human dental plaque and may be a mechanism of entry when humans encounter contaminated aerosols, water or food.

Keywords: Enterococci, avian excreta, dental plaque, NGS

Procedia PDF Downloads 164
3072 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 211
3071 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, S. Pradhan

Abstract:

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and also on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and also the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Keywords: accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics

Procedia PDF Downloads 417
3070 The Role of Hausa Oral Praise Singer in Conflict Management and Social Mobilization in Nigeria

Authors: Ladan Surajo

Abstract:

Nigeria as a third world country is full of people who cannot read and write, thereby constituting a stumbling block to the modern way of communication. It is a well known fact that Nigeria is a heterogeneous country with an estimated 450 or more ethnic groups communicating in divergent languages. Despite this scenario, English, Hausa, Igbo and Yoruba languages are predominantly used in the country. Apart from English language, Hausa has a wider coverage of usage among the indigenous languages in Nigeria, thereby using it in the area of social mobilization and conflict management cannot be overemphasized. Hausa Oral Singers are depicting their artistic and God endowed talents through singing to mobilize and sensitize the local communities about government programmes and the ills of other social problems of the society. It is the belief of this researcher that if used properly, the Hausa Oral Singers will assist immensely in reducing to the barest minimum some social ills of the society in Nigeria. More so that music is the food of the heart and has a resounding impact in changing the behaviour of individuals and groups.

Keywords: oral, singers, praise, social mobilization, conflict management

Procedia PDF Downloads 464
3069 Challenges Brought about by Integrating Multiple Stakeholders into Farm Management Mentorship of Land Reform Beneficiaries in South Africa

Authors: Carlu Van Der Westhuizen

Abstract:

The South African Agricultural Sector is of major socio-economic importance to the country due to its contribution in maintaining stability in food production and food security, providing labour opportunities, eradicating poverty and earning foreign currency. Against this reality, this paper investigates within the Agricultural Sector in South Africa the changes in Land Policies that the new democratically elected government (African National Congress) brought about since their takeover in 1994. The change in the agricultural environment is decidedly dualistic, with 1) a commercial sector, and 2) a subsistence and emerging farmer sector. The future demands and challenges are mostly identified as those of land redistribution and social upliftment. Opportunities that arose from the challenge of change are, among others, the small-holder participation in the value chain, while the challenge of change in Agriculture and the opportunities that were identified could serve as a yardstick against which the Sectors’ (Agriculture) Performance could be measured in future. Unfortunately, despite all Governments’ Policies, Programmes and Projects and inputs of the Private Sector, the outcomes are, to a large extend, unsuccessful. The urgency with the Land Redistribution Programme is that, for the period 1994 – 2014, only 7.5% of the 30% aim in the redistribution of land was achieved. Another serious aspect of concern is that 90% of the Land Redistribution Projects are not in a state of productive use by emerging farmers. Several reasons may be offered for these failures, amongst others the uncoordinated way in which different stakeholders are involved in a specific farming project. These stakeholders could generally in most cases be identified as: - The Government as the policy maker; - The Private Sector that has the potential to contribute to the sustainable pre- and post-settlement stages of the Programme by cooperating the supporting services to Government; - Inputs from the communities in rural areas where the settlement takes place; - The landowners as sellers of land (e.g. a Traditional Council); and - The emerging beneficiaries as the receivers of land. Mentorship is mostly the medium with which the support are coordinated. In this paper focus will be on three scenarios of different types of mentorship (or management support) namely: - The Taung Irrigation Scheme (TIS) where multiple new land beneficiaries were established by sharing irrigation pivots and receiving mentorship support from commodity organisations within a traditional land sharing system; - Projects whereby the mentor is a strategic partner (mostly a major agricultural 'cooperative' which is also providing inputs to the farmer and responsible for purchasing/marketing all commodities produced); and - An individual mentor who is a private person focussing mainly on farm management mentorship without direct gain other than a monthly stipend paid to the mentor by Government. Against this introduction the focus of the study is investigating the process for the sustainable implementation of Governments’ Land Redistribution in South African Agriculture. To achieve this, the research paper is presented under the themes of problem statement, objectives, methodology and limitations, outline of the research process, as well as proposing possible solutions.

Keywords: land reform, role-players, failures, mentorship, management models

Procedia PDF Downloads 271
3068 Quality and Shelf life of UHT Milk Produced in Tripoli, Libya

Authors: Faozia A. S. Abuhtana, Yahia S. Abujnah, Said O. Gnann

Abstract:

Ultra High Temperature (UHT) processed milk is widely distributed and preferred in numerous countries all over the world due its relatively high quality and long shelf life. Because of the notable high consumption rate of UHT in Libya in addition to negligible studies related to such product on the local level, this study was designed to assess the shelf life of locally produced as well as imported reconstituted sterilized whole milk samples marketed in Tripoli, Libya . Four locally produced vs. three imported brands were used in this study. All samples were stored at room temperature (25± 2C ) for 8 month long period, and subjected to physical, chemical, microbiological and sensory tests. These tests included : measurement of pH, specific gravity, percent acidity, and determination of fat, protein and melamine content. Microbiological tests included total aerobic count, total psychotropic bacteria, total spore forming bacteria and total coliform counts. Results indicated no detection of microbial growth of any type during the study period, in addition to no detection of melamine in all samples. On the other hand, a gradual decline in pH accompanied with gradual increase in % acidity of both locally produced and imported samples was observed. Such changes in both pH and % acidity reached their lowest and highest values respectively during the 24th week of storage. For instance pH values were (6.40, 6.55, 6.55, 6.15) and (6.30, 6.50, 6.20) for local and imported brands respectively. On the other hand, % acidity reached (0.185, 0181, 0170, 0183) and (0180, 0.180, 0.171) at the 24th week for local and imported brands respectively. Similar pattern of decline was also observed in specific gravity, fat and protein content in some local and imported samples especially at later stages of the study. In both cases, some of the recorded pH values, % acidity, sp. gravity and fat content were in violation of the accepted limits set by Libyan standard no. 356 for sterilized milk. Such changes in pH, % acidity and other UHT sterilized milk constituents during storage were coincided with a gradual decrease in the degree of acceptance of the stored milk samples of both types as shown by sensory scores recorded by the panelists. In either case degree of acceptance was significantly low at late stages of storage and most milk samples became relatively unacceptable after the 18th and 20th week for both untrained and trained panelists respectively.

Keywords: UHT milk, shelf life, quality, gravity, bacteria

Procedia PDF Downloads 340
3067 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads

Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei

Abstract:

The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.

Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load

Procedia PDF Downloads 109
3066 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 101
3065 Analysis of Ecological Footprint of Residents for Urban Spatial Restructuring

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Since the rapid economic development, Korea has recently entered a period of low growth due to population decline and aging. Due to the urbanization around the metropolitan area and the hollowing of local cities, the ecological capacity of a city is decreasing while ecological footprints are increasing, requiring a compact space plan for maintaining urban functions. The purpose of this study is to analyze the relationship between urban spatial structure and residents' ecological footprints for sustainable spatial planning. To do this, we try to analyze the relationship between intra-urban spatial structure, such as net/gross density and service accessibility, and resident ecological footprints of food, housing, transportation, goods and services through survey and structural equation modeling. The results of the study will be useful in establishing an implementation plan for sustainable development goals (SDGs), especially for sustainable cities and communities (SDG 11) and responsible consumption and production (SDG 12) in the future.

Keywords: ecological footprint, structural equation modeling, survey, sustainability, urban spatial structure

Procedia PDF Downloads 267
3064 A Comprehensive Evaluation of the Bus Rapid Transit Project from Gazipur to Airport at Dhaka Focusing on Environmental Impacts

Authors: Swapna Begum, Higano Yoshiro

Abstract:

Dhaka is the capital city of Bangladesh. It is considered as one of the traffic congested cities in the world. The growth of the population of this city is increasing day by day. The land use pattern and the increased socio-economic characteristics increase the motor vehicle ownership of this city. The rapid unplanned urbanization and poor transportation planning have deteriorated the transport environment of this city. Also, the huge travel demand with non-motorized traffics on streets is accounted for enormous traffic congestion in this city. The land transport sector in Dhaka is mainly dependent on road transport comprised of both motorized and non-motorized modes of travel. This improper modal mix and the un-integrated system have resulted in huge traffic congestion in this city. Moreover, this city has no well-organized public transport system and any Mass Transit System to cope with this ever increasing demand. Traffic congestion causes serious air pollution and adverse impact on the economy by deteriorating the accessibility, level of service, safety, comfort and operational efficiency. Therefore, there is an imperative need to introduce a well-organized, properly scheduled mass transit system like (Bus Rapid Transit) BRT minimizing the existing problems.

Keywords: air pollution, BRT, mass transit, traffic congestion

Procedia PDF Downloads 407
3063 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 499
3062 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 161
3061 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 82
3060 Key Success Factors for Malaysian SMES Companies’ Entrepreneurial Leader

Authors: Zainal Abu Zarim, Hafizah Omar Zaki

Abstract:

The objective of this study is to analyse the success factors of entrepreneurs in the Malaysian SMEs in the urge to discover their entrepreneurial leadership characteristics. Data has been collected from top 50 SME award winning companies. The study has used the qualitative approach to data collection, where interviews are dispersed on these selected companies. From these 50 SMEs, only 25 accepted the interview request where one entrepreneur from each SME answered the questions. To successfully run this study, we administered some questions based on Hornaday 42 characteristics of an entrepreneurs, as well some structured questions to determine a successful of a company. The result shows that, entrepreneurs are confident, determine, diligent, flexible, responsive to challenges, responsible, foresight, courageous, aggressive, and committed. Consistent to this, several elements that makes the company successful includes (1) strong financial control, (2) continuous improvement, (3) product quality and product safety as top priority, (4) hard work and team work, and (5) eagerness in taking challenges. These results has deemed that entrepreneurs in many aspects are also leaders that are risk averse and determine, and are eager to work on continuous improvement in a financially strong company.

Keywords: characteristics of entrepreneurs, success of a company, key success factors, Malaysian SMEs

Procedia PDF Downloads 593
3059 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 110
3058 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process

Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi

Abstract:

Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.

Keywords: whey treatment, dairy industry, precipitation, protein, mineral

Procedia PDF Downloads 418
3057 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.

Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code

Procedia PDF Downloads 417
3056 Study of the Mega–Landslide at the Community of Ropoto, Central Greece, and of the Design of Mitigation and Early Warning System Using the Fiber Bragg Grating Technology

Authors: Michael Bellas, George Voulgaridis

Abstract:

This paper refers to the world known mega - landslide induced at the community of Ropoto, belonging to the Municipality of Trikala, in the Central part of Greece. The landslide affected the debris as well as the colluvium mantle of the flysch, and makes up a special case of study in engineering geology and geotechnical engineering not only because of the size of the domain affected by the landslide (approximately 750m long), but also because of the geostructure’s global behavior. Due to the landslide, the whole community’s infrastructure massively collapsed and human lives were put in danger. After the complete simulation of the coupled Seepage - Deformation phenomenon due to the extreme rainfall, and by closely examining the slope’s global behavior, both the mitigation of the landslide, as well as, an advanced surveillance method (Fiber Bragg Grating) using fiber optics were further studied, in order both to retain the geostructure and to monitor its health by creating an early warning system, which would serve as a complete safety net for saving both the community’s infrastructure as well as the lives of its habitats.

Keywords: landslide, remediation measures, the finite element method (FEM), Fiber Bragg Grating (FBG) sensing method

Procedia PDF Downloads 331
3055 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials

Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.

Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II

Procedia PDF Downloads 437
3054 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry

Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty

Abstract:

Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.

Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe

Procedia PDF Downloads 286
3053 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 75
3052 Characterization of Edible Film from Uwi Starch (Dioscorea alata L.)

Authors: Miksusanti, Herlina, Wiwin

Abstract:

The research about modification uwi starch (Dioscorea alata L) by using propylene oxide has been done. Concentration of propylene oxide were 6%(v/w), 8%(v/w), and 10%(v/w). The amilograf parameters after modification were characteristic breakdown viscosity 43 BU and setback viscosity 975 BU. The modification starch have edible properties according to FDA (Food and Drug Administration) which have degree of modification < 7%, degree of substitution < 0,1 and propylene oxide concentration < 10%(v/w). The best propylene oxide in making of edible film was 8 %( v/w). The starch control can be made into edible film with thickness 0,136 mm, tensile strength 20,4605 MPa and elongation 22%. Modification starch of uwi can be made into edible film with thickness 0,146 mm, tensile strength 25, 3521 Mpa, elongation 30% and water vapor transmission 7, 2651 g/m2/24 hours. FTIR characterization of uwi starch showed the occurrence of hydroxypropylation. The peak spectrum at 2900 cm-1 showed bonding of C-H from methyl group, which is characteristic for modification starch with hydroxypropyl. Characterization with scanning electron microscopy showed that modification of uwi starch has turned the granule of starch to be fully swallon.

Keywords: uwi starch, edible film, propylen oxide, modification

Procedia PDF Downloads 302
3051 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 172