Search results for: center-based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7276

Search results for: center-based learning

2866 Comparison between Approaches Used in Two Walk About Projects

Authors: Derek O Reilly, Piotr Milczarski, Shane Dowdall, Artur Hłobaż, Krzysztof Podlaski, Hiram Bollaert

Abstract:

Learning through creation of contextual games is a very promising way/tool for interdisciplinary and international group projects. During 2013 and 2014 we took part and organized two intensive students projects in different conditions. The projects enrolled 68 students and 12 mentors from 5 countries. In the paper we want to share our experience how to strengthen the chances to succeed in short (12-15 days long) student projects. In our case almost all teams prepared working prototype and the results were highly appreciated by external experts.

Keywords: contextual games, mobile games, GGULIVRR, walkabout, Erasmus intensive programme

Procedia PDF Downloads 506
2865 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 330
2864 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 174
2863 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 165
2862 Framework for Explicit Social Justice Nursing Education and Practice: A Constructivist Grounded Theory Research

Authors: Victor Abu

Abstract:

Background: Social justice ideals are considered as the foundation of nursing practice. These ideals are not always clearly integrated into nursing professional standards or curricula. This hinders concerted global nursing agendas for becoming aware of social injustice or engaging in action for social justice to improve the health of individuals and groups. Aim and objectives: The aim was to create an educational framework for empowering nursing students for social justice awareness and action. This purpose was attained by understanding the meaning of social justice, the effect of social injustice, the visibility of social justice learning, and ways of integrating social justice in nursing education and practice. Methods: Critical interpretive methodologies and constructivist grounded theory research designs guided the processes of recruiting nursing students (n = 11) and nurse educators (n = 11) at a London nursing university to participate in interviews and focus groups, which were analysed by coding systems. Findings: Firstly, social justice was described as ethical practices that enable individuals and groups to have good access to health resources. Secondly, social injustice was understood as unfair practices that caused minimal access to resources, social deprivation, and poor health. Thirdly, social justice learning was considered to be invisible in nursing education due to a lack of explicit modules, educator knowledge, and organisational support. Lastly, explicit modules, educating educators, and attracting leaders’ support were suggested as approaches for the visible integration of social justice in nursing education and practice. Discussion: This research proposes approaches for nursing awareness and action for the development of critical active nurse-learner, critical conscious nurse-educator, and servant nurse leader. The framework on Awareness for Social Justice Action (ASJA) created in this research is an approach for empowering nursing students for social justice practices. Conclusion: This research contributes to and advocates for greater nursing scholarship to raise the spotlight on social justice in the profession.

Keywords: social justice, nursing practice, nursing education, nursing curriculum, social justice awareness, social justice action, constructivist grounded theory

Procedia PDF Downloads 64
2861 Extended Knowledge Exchange with Industrial Partners: A Case Study

Authors: C. Fortin, D. Tokmeninova, O. Ushakova

Abstract:

Among 500 Russian universities Skolkovo Institute of Science and Technology (Skoltech) is one of the youngest (established in 2011), quite small and vastly international, comprising 20 percent of international students and 70 percent of faculty with significant academic experience at top-100 universities (QS, THE). The institute has emerged from close collaboration with MIT and leading Russian universities. Skoltech is an entirely English speaking environment. Skoltech curriculum plans of ten Master programs are based on the CDIO learning outcomes model. However, despite the Institute’s unique focus on industrial innovations and startups, one of the main challenges has become an evident large proportion of nearly half of MSc graduates entering PhD programs at Skoltech or other universities rather than industry or entrepreneurship. In order to increase the share of students joining the industrial sector after graduation, Skoltech started implementing a number of unique practices with a focus on employers’ expectations incorporated into the curriculum redesign. In this sense, extended knowledge exchange with industrial partners via collaboration in learning activities, industrial projects and assessments became essential for students’ headway into industrial and entrepreneurship pathways. Current academic curriculum includes the following types of components based on extended knowledge exchange with industrial partners: innovation workshop, industrial immersion, special industrial tracks, MSc defenses. Innovation workshop is a 4 week full time diving into the Skoltech vibrant ecosystem designed to foster innovators, focuses on teamwork, group projects, and sparks entrepreneurial instincts from the very first days of study. From 2019 the number of mentors from industry and startups significantly increased to guide students across these sectors’ demands. Industrial immersion is an exclusive part of Skoltech curriculum where students after the first year of study spend 8 weeks in an industrial company carrying out an individual or team project and are guided jointly by both Skoltech and company supervisors. The aim of the industrial immersion is to familiarize students with relevant needs of Russian industry and to prepare graduates for job placement. During the immersion a company plays the role of a challenge provider for students. Skoltech has started a special industrial track comprising deep collaboration with IPG Photonics – a leading R&D company and manufacturer of high-performance fiber lasers and amplifiers for diverse applications. The track is aimed to train a new cohort of engineers and includes a variety of activities for students within the “Photonics” MSc program. It is expected to be a successful story and used as an example for similar initiatives with other Russian high-tech companies. One of the pathways of extended knowledge exchange with industrial partners is an active involvement of potential employers in MSc Defense Committees to review and assess MSc thesis projects and to participate in defense procedures. The paper will evaluate the effect and results of the above undertaken measures.

Keywords: Curriculum redesign, knowledge exchange model, learning outcomes framework, stakeholder engagement

Procedia PDF Downloads 83
2860 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations

Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva

Abstract:

The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.

Keywords: semiotics, language, high school, physics teaching

Procedia PDF Downloads 136
2859 Home Education in the Australian Context

Authors: Abeer Karaali

Abstract:

This paper will seek to clarify important key terms such as home schooling and home education as well as the legalities attached to such terms. It will reflect on the recent proposed changes to terminology in NSW, Australia. The various pedagogical approaches to home education will be explored including their prominence in the Australian context. There is a strong focus on literature from Australia. The historical background of home education in Australia will be explained as well as the difference between distance education and home education. The statistics related to home education in Australia will be explored in the scope and compared to the US. The future of home education in Australia will be discussed.

Keywords: alternative education, e-learning, home education, home schooling, online resources, technology

Procedia PDF Downloads 410
2858 Closing the Assessment Loop: Case Study in Improving Outcomes for Online College Students during Pandemic

Authors: Arlene Caney, Linda Fellag

Abstract:

To counter the adverse effect of Covid-19 on college student success, two faculty members at a US community college have used web-based assessment data to improve curricula and, thus, student outcomes. This case study exemplifies how “closing the loop” by analyzing outcome assessments in real time can improve student learning for academically underprepared students struggling during the pandemic. The purpose of the study was to develop ways to mitigate the negative impact of Covid-19 on student success of underprepared college students. Using the Assessment, Evaluation, Feedback and Intervention System (AEFIS) and other assessment tools provided by the college’s Office of Institutional Research, an English professor and a Music professor collected data in skill areas related to their curricula over four semesters, gaining insight into specific course sections and learners’ performance across different Covid-driven course formats—face-to-face, hybrid, synchronous, and asynchronous. Real-time data collection allowed faculty to shorten and close the assessment loop, and prompted faculty to enhance their curricula with engaging material, student-centered activities, and a variety of tech tools. Frequent communication, individualized study, constructive criticism, and encouragement were among other measures taken to enhance teaching and learning. As a result, even while student success rates were declining college-wide, student outcomes in these faculty members’ asynchronous and synchronous online classes improved or remained comparable to student outcomes in hybrid and face-to-face sections. These practices have demonstrated that even high-risk students who enter college with remedial level language and mathematics skills, interrupted education, work and family responsibilities, and language and cultural diversity can maintain positive outcomes in college across semesters, even during the pandemic.

Keywords: AEFIS, assessment, distance education, institutional research center

Procedia PDF Downloads 90
2857 Classroom Discourse and English Language Teaching: Issues, Importance, and Implications

Authors: Rabi Abdullahi Danjuma, Fatima Binta Attahir

Abstract:

Classroom discourse is important, and it is worth examining what the phenomena is and how it helps both the teacher and students in a classroom situation. This paper looks at the classroom as a traditional social setting which has its own norms and values. The paper also explains what discourse is, as extended communication in speech or writing often interactively dealing with some particular topics. It also discusses classroom discourse as the language which teachers and students use to communicate with each other in a classroom situation. The paper also looks at some strategies for effective classroom discourse. Finally, implications and recommendations were drawn.

Keywords: classroom, discourse, learning, student, strategies, communication

Procedia PDF Downloads 612
2856 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 99
2855 Method of Nursing Education: History Review

Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán

Abstract:

Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.

Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education

Procedia PDF Downloads 120
2854 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 223
2853 The Effect of a Theoretical and Practical Training Program on Student Teachers’ Acquisition of Objectivity in Self-Assessments

Authors: Zilungile Sosibo

Abstract:

Constructivism in teacher education is growing tremendously in both the developed and developing world. Proponents of constructivism emphasize active engagement of students in the teaching and learning process. In an effort to keep students engaged while they learn to learn, teachers use a variety of methods to incorporate constructivism in the teaching-learning situations. One area that has a potential for realizing constructivism in the classroom is self-assessment. Sadly, students are rarely involved in the assessment of their work. Instead, the most knowing teacher dominates this process. Student involvement in self-assessments has a potential to teach student teachers to become objective assessors of their students’ work by the time they become credentialed. This is important, as objectivity in assessments is a much-needed skill in the classroom contexts within which teachers deal with students from diverse backgrounds and in which biased assessments should be avoided at all cost. The purpose of the study presented in this paper was to investigate whether student teachers acquired the skills of administering self-assessments objectively after they had been immersed in a formal training program and participated in four sets of self-assessments. The objectives were to determine the extent to which they had mastered the skills of objective self-assessments, their growth and development in this area, and the challenges they encountered in administering self-assessments objectively. The research question was: To what extent did student teachers acquire objectivity in self-assessments after their theoretical and practical engagement in this activity? Data were collected from student teachers through participant observation and semi-structured interviews. The design was a qualitative case study. The sample consisted of 39 final-year student teachers enrolled in a Bachelor of Education teacher education program at a university in South Africa. Results revealed that the formal training program and participation in self-assessments had a minimal effect on students’ acquisition of objectivity in self-assessments, due to the factors associated with self-aggrandizement and hegemony, the latter resulting from gender, religious and racial differences. These results have serious implications for the need to incorporate self-assessments in the teacher-education curriculum, as well as for extended formal training programs for student teachers on assessment in general.

Keywords: objectivity, self-assessment, student teachers, teacher education curriculum

Procedia PDF Downloads 278
2852 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation

Authors: A. Raj Kumar, S. Bilaloglu

Abstract:

Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.

Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile

Procedia PDF Downloads 242
2851 Locket Application

Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah

Abstract:

Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.

Keywords: locket, app, machine learning, connect

Procedia PDF Downloads 53
2850 Teaching Linguistic Humour Research Theories: Egyptian Higher Education EFL Literature Classes

Authors: O. F. Elkommos

Abstract:

“Humour studies” is an interdisciplinary research area that is relatively recent. It interests researchers from the disciplines of psychology, sociology, medicine, nursing, in the work place, gender studies, among others, and certainly teaching, language learning, linguistics, and literature. Linguistic theories of humour research are numerous; some of which are of interest to the present study. In spite of the fact that humour courses are now taught in universities around the world in the Egyptian context it is not included. The purpose of the present study is two-fold: to review the state of arts and to show how linguistic theories of humour can be possibly used as an art and craft of teaching and of learning in EFL literature classes. In the present study linguistic theories of humour were applied to selected literary texts to interpret humour as an intrinsic artistic communicative competence challenge. Humour in the area of linguistics was seen as a fifth component of communicative competence of the second language leaner. In literature it was studied as satire, irony, wit, or comedy. Linguistic theories of humour now describe its linguistic structure, mechanism, function, and linguistic deviance. Semantic Script Theory of Verbal Humor (SSTH), General Theory of Verbal Humor (GTVH), Audience Based Theory of Humor (ABTH), and their extensions and subcategories as well as the pragmatic perspective were employed in the analyses. This research analysed the linguistic semantic structure of humour, its mechanism, and how the audience reader (teacher or learner) becomes an interactive interpreter of the humour. This promotes humour competence together with the linguistic, social, cultural, and discourse communicative competence. Studying humour as part of the literary texts and the perception of its function in the work also brings its positive association in class for educational purposes. Humour is by default a provoking/laughter-generated device. Incongruity recognition, perception and resolving it, is a cognitive mastery. This cognitive process involves a humour experience that lightens up the classroom and the mind. It establishes connections necessary for the learning process. In this context the study examined selected narratives to exemplify the application of the theories. It is, therefore, recommended that the theories would be taught and applied to literary texts for a better understanding of the language. Students will then develop their language competence. Teachers in EFL/ESL classes will teach the theories, assist students apply them and interpret text and in the process will also use humour. This is thus easing students' acquisition of the second language, making the classroom an enjoyable, cheerful, self-assuring, and self-illuminating experience for both themselves and their students. It is further recommended that courses of humour research studies should become an integral part of higher education curricula in Egypt.

Keywords: ABTH, deviance, disjuncture, episodic, GTVH, humour competence, humour comprehension, humour in the classroom, humour in the literary texts, humour research linguistic theories, incongruity-resolution, isotopy-disjunction, jab line, longer text joke, narrative story line (macro-micro), punch line, six knowledge resource, SSTH, stacks, strands, teaching linguistics, teaching literature, TEFL, TESL

Procedia PDF Downloads 307
2849 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 82
2848 3D Receiver Operator Characteristic Histogram

Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng

Abstract:

ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the

Keywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction

Procedia PDF Downloads 319
2847 Reading Literacy, Storytelling and Cognitive Learning: an Effective Connection in Sustainability Education

Authors: Rosa Tiziana Bruno

Abstract:

The connection between education and sustainability has been posited to have benefit for realizing a social development compatible with environmental protection. However, an educational paradigm based on the passage of information or on the fear of a catastrophe might not favor the acquisition of eco-identity. To build a sustainable world, it is necessary to "become people" in harmony with other human beings, being aware of belonging to the same human community that is part of the natural world. This can only be achieved within an authentic educating community and the most effective tools for building educating communities are reading literacy and storytelling. This paper is the report of a research-action carried out in this direction, in agreement with the sociology department of the University of Salerno, which involved four hundred children and their teachers in a path based on the combination of reading literacy, storytelling, autobiographical writing and outdoor education. The goal of the research was to create an authentic educational community within the school, capable to encourage the acquisition of an eco-identity by the pupils, that is, personal and relational growth in the full realization of the Self, in harmony with the social and natural environment, with a view to an authentic education for sustainability. To ensure reasonable validity and reliability of findings, the inquiry started with participant observation and a process of triangulation has been used including: semi-structured interview, socio-semiotic analysis of the conversation and time budget. Basically, a multiple independent sources of data was used to answer the questions. Observing the phenomenon through multiple "windows" helped to comparing data through a variety of lenses. All teachers had the experience of implementing a socio-didactic strategy called "Fiabadiario" and they had the possibility to use it with approaches that fit their students. The data being collected come from the very students and teachers who are engaged with this strategy. The educational path tested during the research has produced sustainable relationships and conflict resolution within the school system and between school and families, creating an authentic and sustainable learning community.

Keywords: educating community, education for sustainability, literature in education, social relations

Procedia PDF Downloads 124
2846 Effects of Intracerebroventricular Injection of Ghrelin and Aerobic Exercise on Passive Avoidance Memory and Anxiety in Adult Male Wistar Rats

Authors: Mohaya Farzin, Parvin Babaei, Mohammad Rostampour

Abstract:

Ghrelin plays a considerable role in important neurological effects related to food intake and energy homeostasis. As was found, regular physical activity may make available significant improvements to cognitive functions in various behavioral situations. Anxiety is one of the main concerns of the modern world, affecting millions of individuals’ health. There are contradictory results regarding ghrelin's effects on anxiety-like behavior, and the plasma level of this peptide is increased during physical activity. Here we aimed to evaluate the coincident effects of exogenous ghrelin and aerobic exercise on anxiety-like behavior and passive avoidance memory in Wistar rats. Forty-five male Wistar rats (250 ± 20 g) were divided into 9 groups (n=5) and received intra-hippocampal injections of 3.0 nmol ghrelin and performed aerobic exercise training for 8 weeks. Control groups received the same volume of saline and diazepam as negative and positive control groups, respectively. Learning and memory were estimated using a shuttle box apparatus, and anxiety-like behavior was recorded by an elevated plus-maze test (EPM). Data were analyzed by ANOVA test, and p<0.05 was considered significant. Our findings showed that the combined effect of ghrelin and aerobic exercise improves the acquisition, consolidation, and retrieval of passive avoidance memory in Wistar rats. Furthermore, it is supposed that the ghrelin receiving group spent less time in open arms and fewer open arms entries compared with the control group (p<0.05). However, exercising Wistar rats spent more time in the open arm zone in comparison with the control group (p<0.05). The exercise + Ghrelin administration established reduced anxiety (p<0.05). The results of this study demonstrate that aerobic exercise contributes to an increase in the endogenous production of ghrelin, and physical activity alleviates anxiety-related behaviors induced by intra-hippocampal injection of ghrelin. In general, exercise and ghrelin can reduce anxiety and improve memory.

Keywords: anxiety, ghrelin, aerobic exercise, learning, passive avoidance memory

Procedia PDF Downloads 124
2845 Evaluating Gender Sensitivity and Policy: Case Study of an EFL Textbook in Armenia

Authors: Ani Kojoyan

Abstract:

Linguistic studies have been investigating a connection between gender and linguistic development since 1970s. Scholars claim that gender differences in first and second language learning are socially constructed. Recent studies to language learning and gender reveal that second language acquisition is also a social phenomenon directly influencing one’s gender identity. Those responsible for designing language learning-teaching materials should be encouraged to understand the importance of and address the gender sensitivity accurately in textbooks. Writing or compiling a textbook is not an easy task; it requires strong academic abilities, patience, and experience. For a long period of time Armenia has been involved in the compilation process of a number of foreign language textbooks. However, there have been very few discussions or evaluations of those textbooks which will allow specialists to theorize that practice. The present paper focuses on the analysis of gender sensitivity issues and policy aspects involved in an EFL textbook. For the research the following material has been considered – “A Basic English Grammar: Morphology”, first printed in 2011. The selection of the material is not accidental. First, the mentioned textbook has been widely used in university teaching over years. Secondly, in Armenia “A Basic English Grammar: Morphology” has considered one of the most successful English grammar textbooks in a university teaching environment and served a source-book for other authors to compile and design their textbooks. The present paper aims to find out whether an EFL textbook is gendered in the Armenian teaching environment, and whether the textbook compilers are aware of gendered messages while compiling educational materials. It also aims at investigating students’ attitude toward the gendered messages in those materials. And finally, it also aims at increasing the gender sensitivity among book compilers and educators in various educational settings. For this study qualitative and quantitative research methods of analyses have been applied, the quantitative – in terms of carrying out surveys among students (45 university students, 18-25 age group), and the qualitative one – by discourse analysis of the material and conducting in-depth and semi-structured interviews with the Armenian compilers of the textbook (interviews with 3 authors). The study is based on passive and active observations and teaching experience done in a university classroom environment in 2014-2015, 2015-2016. The findings suggest that the discussed and analyzed teaching materials (145 extracts and examples) include traditional examples of intensive use of language and role-modelling, particularly, men are mostly portrayed as active, progressive, aggressive, whereas women are often depicted as passive and weak. These modeled often serve as a ‘reliable basis’ for reinforcing the traditional roles that have been projected on female and male students. The survey results also show that such materials contribute directly to shaping learners’ social attitudes and expectations around issues of gender. The applied techniques and discussed issues can be generalized and applied to other foreign language textbook compilation processes, since those principles, regardless of a language, are mostly the same.

Keywords: EFL textbooks, gender policy, gender sensitivity, qualitative and quantitative research methods

Procedia PDF Downloads 198
2844 A Case Study Comparing the Effect of Computer Assisted Task-Based Language Teaching and Computer-Assisted Form Focused Language Instruction on Language Production of Students Learning Arabic as a Foreign Language

Authors: Hanan K. Hassanein

Abstract:

Task-based language teaching (TBLT) and focus on form instruction (FFI) methods were proven to improve quality and quantity of immediate language production. However, studies that compare between the effectiveness of the language production when using TBLT versus FFI are very little with results that are not consistent. Moreover, teaching Arabic using TBLT is a new field with few research that has investigated its application inside classrooms. Furthermore, to the best knowledge of the researcher, there are no prior studies that compared teaching Arabic as a foreign language in a classroom setting using computer-assisted task-based language teaching (CATBLT) with computer-assisted form focused language instruction (CAFFI). Accordingly, the focus of this presentation is to display CATBLT and CAFFI tools when teaching Arabic as a foreign language as well as demonstrate an experimental study that aims to identify whether or not CATBLT is a more effective instruction method. The effectiveness will be determined through comparing CATBLT and CAFFI in terms of accuracy, lexical complexity, and fluency of language produced by students. The participants of the study are 20 students enrolled in two intermediate-level Arabic as a foreign language classes. The experiment will take place over the course of 7 days. Based on a study conducted by Abdurrahman Arslanyilmaz for teaching Turkish as a second language, an in-house computer assisted tool for the TBLT and another one for FFI will be designed for the experiment. The experimental group will be instructed using the in-house CATBLT tool and the control group will be taught through the in-house CAFFI tool. The data that will be analyzed are the dialogues produced by students in both the experimental and control groups when completing a task or communicating in conversational activities. The dialogues of both groups will be analyzed to understand the effect of the type of instruction (CATBLT or CAFFI) on accuracy, lexical complexity, and fluency. Thus, the study aims to demonstrate whether or not there is an instruction method that positively affects the language produced by students learning Arabic as a foreign language more than the other.

Keywords: computer assisted language teaching, foreign language teaching, form-focused instruction, task based language teaching

Procedia PDF Downloads 254
2843 Learning from Flood: A Case Study of a Frequently Flooded Village in Hubei, China

Authors: Da Kuang

Abstract:

Resilience is a hotly debated topic in many research fields (e.g., engineering, ecology, society, psychology). In flood management studies, we are experiencing the paradigm shift from flood resistance to flood resilience. Flood resilience refers to tolerate flooding through adaptation or transformation. It is increasingly argued that our city as a social-ecological system holds the ability to learn from experience and adapt to flood rather than simply resist it. This research aims to investigate what kinds of adaptation knowledge the frequently flooded village learned from past experience and its advantages and limitations in coping with floods. The study area – Xinnongcun village, located in the west of Wuhan city, is a linear village and continuously suffered from both flash flood and drainage flood during the past 30 years. We have a field trip to the site in June 2017 and conducted semi-structured interviews with local residents. Our research summarizes two types of adaptation knowledge that people learned from the past floods. Firstly, at the village scale, it has formed a collective urban form which could help people live during both flood and dry season. All houses and front yards were elevated about 2m higher than the road. All the front yards in the village are linked and there is no barrier. During flooding time, people walk to neighbors through houses yards and boat to outside village on the lower road. Secondly, at individual scale, local people learned tacit knowledge of preparedness and emergency response to flood. Regarding the advantages and limitations, the adaptation knowledge could effectively help people to live with flood and reduce the chances of getting injuries. However, it cannot reduce local farmers’ losses on their agricultural land. After flood, it is impossible for local people to recover to the pre-disaster state as flood emerges during June and July will result in no harvest. Therefore, we argue that learning from past flood experience could increase people’s adaptive capacity. However, once the adaptive capacity cannot reduce people’s losses, it requires a transformation to a better regime.

Keywords: adaptation, flood resilience, tacit knowledge, transformation

Procedia PDF Downloads 336
2842 Analysis of Atomic Models in High School Physics Textbooks

Authors: Meng-Fei Cheng, Wei Fneg

Abstract:

New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.

Keywords: atomic models, textbooks, science education, scientific model

Procedia PDF Downloads 162
2841 Content-Aware Image Augmentation for Medical Imaging Applications

Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang

Abstract:

Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.

Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving

Procedia PDF Downloads 230
2840 Improving the Competency of Undergraduate Nursing Students in Addressing a Timely Public Health Issue

Authors: Tsu-Yin Wu, Jenni Hoffman, Lydia McMurrows, Sarah Lally

Abstract:

Recent events of the Flint Water Crisis and elevated lead levels in Detroit public school water have highlighted a specific public health disparity and shown the need for better education of healthcare providers on lead education. Identifying children and pregnant women with a high risk for lead poisoning and ensuring lead testing is completed is critical. The purpose of this study is to explore the impact of an educational intervention on knowledge and confidence levels among nursing students enrolled in the prelicensure Bachelor of Science in Nursing (BSN) and Registered Nurse to BSN program (R2B). The study used both quantitative and qualitative research methods to assess the impact of multi-modal pedagogy on knowledge and confidence of lead screening and prevention among prelicensure and R2B nursing students. The students received lead poisoning and prevention content in addition to completing an e-learning module developed by the Pediatric Environmental Health Specialty Units. A total of 115 students completed the pre-and post-test instrument that consisted of demographic, lead knowledge, and confidence items. Despite the increase of total knowledge, three dimensions of lead poisoning, and confidence from pre- to post-test scores for both groups, there was no statistical significance on the increase between prelicensure and R2B students. Thematic analysis of qualitative data showed five themes from participants' learning experiences: lead exposure, signs and symptoms of lead poisoning, screening and diagnosis, prevention, and policy and statewide issues. The study is limited by a small sample and participants recalling some correct answers from the pretest, thus, scoring higher on the post-test. The results contribute to the minimally existent literature examining a critical public health concern regarding lead health exposure and prevention education of nursing students. Incorporating such content area into the nursing curriculum is essential in ensuring that such public health disparities are mitigated.

Keywords: lead poisoning, emerging public health issue, community health, nursing edducation

Procedia PDF Downloads 203
2839 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 300
2838 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 162
2837 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 159