Search results for: energy non-supplied
4086 Overview of Risk Management in Electricity Markets Using Financial Derivatives
Authors: Aparna Viswanath
Abstract:
Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.Keywords: financial derivatives, forward, futures, options, risk management
Procedia PDF Downloads 4814085 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes
Authors: Alan Luo, Hunter N. B. Moseley
Abstract:
Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography
Procedia PDF Downloads 1364084 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam
Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir
Abstract:
Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory
Procedia PDF Downloads 3234083 The Modern Significance of Chinese Traditional Gardens for the Development of Modern Eco-Garden Cities
Authors: Liang Zhang
Abstract:
Chinese traditional gardens are the historical and cultural treasures of the whole mankind, among which the excellent parts still have important guiding significance for modern urban design. Based on the background of eco-garden city and reality, through the analysis of various design elements of classical gardens, combined with the needs of today's urban development, starting from the three needs of landscape, energy saving and environmental protection. To explore how Chinese traditional gardens can be revitalized in modern urban planning.Keywords: Chinese traditional gardens, eco-garden city, modern urban planning, urban development
Procedia PDF Downloads 1814082 Growth Nanostructured CdO Thin Film via Solid-Vapor Deposition
Authors: A. S. Obaid, K. H. T. Hassan, A. M. Asij, B. M. Salih, M. Bououdina
Abstract:
Cadmium Oxide (CdO) thin films have been prepared by vacuum evaporation method on Si (111) substrate at room temperature using CdCl2 as a source of Cd. Detailed structural properties of the films are presented using XRD and SEM. The films was pure polycrystalline CdO phase with high crystallinity. The lattice constant average crystallite size of the nanocrystalline CdO thin films were calculated. SEM image confirms the formation nanostructure. Energy dispersive X-ray analysis spectra of CdO thin films shows the presence of Cd and O peaks only, no additional peaks attributed to impurities or contamination are observed.Keywords: nanostructured CdO, solid-vapor deposition, quantum size effect, cadmium oxide
Procedia PDF Downloads 6704081 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology
Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo
Abstract:
Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services
Procedia PDF Downloads 1304080 The Paradox of Design Aesthetics and the Sustainable Design
Authors: Asena Demirci, Gozen Guner Aktaş, Nur Ayalp
Abstract:
Nature provides a living space for humans, also in contrast it is destroyed by humans for their personal needs and ambitions. For decreasing these damages against nature, solutions are started to generate and to develop. Moreover, precautions are implemented. After 1960s, especially when the ozone layer got harmed and got thinner by toxic substances coming from man made structures, environmental problems which effected human’s activities of daily living. Thus, this subject about environmental solutions and precautions is becoming a priority issue for scientists. Most of the environmental problems are caused by buildings and factories which are built without any concerns about protecting nature. This situation creates awareness about environmental issues and also the terms like sustainability, Renewable energy show up in building, Construction and architecture sectors to provide environmental protection. In this perspective, the design disciplines also should be respectful to nature and the sustainability. Designs which involve the features like sustainability, renewability and being ecologic have specialties to be less detrimental to the environment rather than the designs which do not involve. Furthermore, these designs produce their own energy for consuming, So they do not use the natural resources. They do not contain harmful substances and they are made of recyclable materials. Thus, they are becoming environmentally friendly structures. There is a common concern among designers about the issue of sustainable design. They believe that the idea of sustainability inhibits the creativity. All works of design resemble each other from the point of aesthetics and technological matters. In addition, there is a concern about design ethics which aesthetic designs cannot be accepted as a priority. For these reasons, there are few designs included the features of being eco-friendly and well-designed and also had design concerns around the world. Despite the other design disciplines, The concept of sustainability is getting more important each day in interior architecture and interior design. As it is known that human being spends 90 % of his life in interior spaces, The importance of that concept in interior spaces is obvious. Aesthetic is another vital concern in interior space design also. Most of the time sustainable materials and sustainable interior design applications conflicts with personal aesthetic parameters. This study aims to discuss the great paradox between the design aesthetic and the sustainable design. Does the sustainable approach in interior design disturbs the design aesthetic? This is one of the most popular questions that have been discussed for a while. With this paper this question will be evaluated with a case study which analyzes the aesthetic perceptions and preferences of the users and designers in sustainable interior spaces.Keywords: aesthetics, interior design, sustainable design, sustainability
Procedia PDF Downloads 2964079 Study of Composite Beam under the Effect of Shear Deformation
Authors: Hamid Hamli Benzahar
Abstract:
The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.Keywords: composite beam, shear deformation, moments, finites elements
Procedia PDF Downloads 814078 Fabrication of a High-Performance Polyetherimide Membrane for Helium Separation
Authors: Y. Alqaheem, A. Alomair, F. Altarkait, F. Alswaileh, Nusrat Tanoli
Abstract:
Helium market is continuously growing due to its essential uses in the electronic and healthcare sectors. Currently, helium is produced by cryogenic distillation but the process is uneconomical especially for low production volumes. On the other hand, polymeric membranes can provide a cost-effective solution for helium purification due to their low operating energy. However, the preparation of membranes involves the use of very toxic solvents such as chloroform. In this work, polyetherimide membranes were prepared using a less toxic solvent, n-methylpyrrolidone with a polymer-to-solvent ratio of 27 wt%. The developed membrane showed a superior helium permeability of 15.9 Barrer that surpassed the permeability of membranes made by chloroform.Keywords: helium separation, polyetherimide, dense membrane, gas permeability
Procedia PDF Downloads 1754077 Structural and Morphological Study of Europium Doped ZnO
Authors: Abdelhak Nouri
Abstract:
Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO
Procedia PDF Downloads 1834076 Effects of Roasting as Preservative Method on Food Value of the Runner Groundnuts, Arachis hypogaea
Authors: M. Y. Maila, H. P. Makhubele
Abstract:
Roasting is one of the oldest preservation method used in foods such as nuts and seeds. It is a process by which heat is applied to dry foodstuffs without the use of oil or water as a carrier. Groundnut seeds, also known as peanuts when sun dried or roasted, are among the oldest oil crops that are mostly consumed as a snack, after roasting in many parts of South Africa. However, roasting can denature proteins, destroy amino acids, decrease nutritive value and induce undesirable chemical changes in the final product. The aim of this study, therefore, was to evaluate the effect of various roasting times on the food value of the runner groundnut seeds. A constant temperature of 160 °C and various time-intervals (20, 30, 40, 50 and 60 min) were used for roasting groundnut seeds in an oven. Roasted groundnut seeds were then cooled and milled to flour. The milled sundried, raw groundnuts served as reference. The proximate analysis (moisture, energy and crude fats) was performed and the results were determined using standard methods. The antioxidant content was determined using HPLC. Mineral (cobalt, chromium, silicon and iron) contents were determined by first digesting the ash of sundried and roasted seed samples in 3M Hydrochloric acid and then determined by Atomic Absorption Spectrometry. All results were subjected to ANOVA through SAS software. Relative to the reference, roasting time significantly (p ≤ 0.05) reduced moisture (71%–88%), energy (74%) and crude fat (5%–64%) of the runner groundnut seeds, whereas the antioxidant content was significantly (p ≤ 0.05) increased (35%–72%) with increasing roasting time. Similarly, the tested mineral contents of the roasted runner groundnut seeds were also significantly (p ≤ 0.05) reduced at all roasting times: cobalt (21%–83%), chromium (48%–106%) and silicon (58%–77%). However, the iron content was significantly (p ≤ 0.05) unaffected. Generally, the tested runner groundnut seeds had higher food value in the raw state than in the roasted state, except for the antioxidant content. Moisture is a critical factor affecting the shelf life, texture and flavor of the final product. Loss of moisture ensures prolonged shelf life, which contribute to the stability of the roasted peanuts. Also, increased antioxidant content in roasted groundnuts is essential in other health-promoting compounds. In conclusion, the overall reduction in the proximate and mineral contents of the runner groundnuts seeds due to roasting is sufficient to suggest influences of roasting time on the food value of the final product and shelf life.Keywords: dry roasting, legume, oil source, peanuts
Procedia PDF Downloads 2964075 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia
Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim
Abstract:
This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.Keywords: evaporative cooling, vapor compression, electricity consumption, CO2 emission
Procedia PDF Downloads 4384074 Therapeutic Touch from Primary Care to Tertiary Care in Health Services
Authors: Ayşegül Bilge, Hacer Demirkol, Merve Uğuryol
Abstract:
Therapeutic touch is one of the most important methods of complementary and alternative treatments. Therapeutic touch requires the sharing of universal energy. Therapeutic touch (TT) provides the interaction between the patient and the nurse. In addition, nurses can be aware of physical and mental symptoms of patients through therapeutic touch. Therapeutic touch (TT) is short-term provides the advantage for the nurse. For this reason, nurses have to be aware of the importance of therapeutic touch and they can use it from the primary care to tertiary care in nursing practices at in health field.Keywords: health care services, complementary treatment, nursing, therapeutic touch
Procedia PDF Downloads 3514073 Secure Watermarking not at the Cost of Low Robustness
Authors: Jian Cao
Abstract:
This paper describes a novel watermarking technique which we call the random direction embedding (RDE) watermarking. Unlike traditional watermarking techniques, the watermark energy after the RDE embedding does not focus on a fixed direction, leading to the security against the traditional unauthorized watermark removal attack. In addition, the experimental results show that when compared with the existing secure watermarking, namely natural watermarking (NW), the RDE watermarking gains significant improvement in terms of robustness. In fact, the security of the RDE watermarking is not at the cost of low robustness, and it can even achieve more robust than the traditional spread spectrum watermarking, which has been shown to be very insecure.Keywords: robustness, spread spectrum watermarking, watermarking security, random direction embedding (RDE)
Procedia PDF Downloads 3884072 Green Synthesis of Metal Oxide and Silver Nanoparticles Using Citrus Peel Extracts: Antibacterial, Antidiabetic, and Photovoltaic Applications
Authors: Roghaye Behroozi
Abstract:
Traditional chemical synthesis methods for nanoparticles (NPs) often involve environmental hazards, complex procedures, and low yields. Green synthesis has emerged as a safer, cost-effective, and eco-friendly alternative. Citrus peel, an agricultural byproduct, provides a sustainable source of bioactive compounds capable of reducing and stabilizing metal ions, enabling the production of biocompatible NPs with valuable biomedical, photovoltaic, and environmental applications. This study aims to develop a green synthesis approach for producing metal oxide and silver nanoparticles (AgNPs) using citrus peel extracts, evaluating their antibacterial, antidiabetic, and photovoltaic properties. Nanoparticles were synthesized via aqueous citrus peel extracts, which served as natural reducing and capping agents. The synthesized NPs were characterized using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy to confirm their crystalline structure, morphology, and stability. Antibacterial efficacy was tested against common pathogenic bacteria, while antidiabetic activity was assessed through in vitro α-amylase inhibition. Photovoltaic properties were evaluated by incorporating the NPs into dye-sensitized solar cells (DSSCs). The synthesized NPs demonstrated distinct crystalline phases and spherical morphology, with notable stability and size uniformity. AgNPs showed significant antibacterial activity against tested pathogens, with enhanced inhibition at higher concentrations. In α-amylase inhibition assays, both metal oxide and AgNPs displayed dose-dependent antidiabetic potential. The DSSCs exhibited promising photovoltaic efficiency, confirming the feasibility of these NPs in light energy applications. Citrus peel-mediated synthesis of metal oxide and AgNPs provides a green, scalable method for producing nanoparticles with multifaceted applications. The findings highlight the potential of these NPs as eco-friendly agents in antibacterial and antidiabetic therapies and as components in renewable energy devices. This approach not only utilizes agricultural waste but also aligns with sustainable development goals by reducing synthetic chemical usage and environmental impact.Keywords: antibacterial activity, citrus peel extract, green synthesis, metal oxide nanoparticles, silver nanoparticles
Procedia PDF Downloads 134071 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces
Authors: Somnath Bhattacharyya
Abstract:
The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions
Procedia PDF Downloads 764070 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 2884069 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV
Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.Keywords: PMSG, VTOL, UAV, high specific power density
Procedia PDF Downloads 5244068 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility
Procedia PDF Downloads 3604067 In silico Model of Transamination Reaction Mechanism
Authors: Sang-Woo Han, Jong-Shik Shin
Abstract:
w-Transaminase (w-TA) is broadly used for synthesizing chiral amines with a high enantiopurity. However, the reaction mechanism of w-TA has been not well studied, contrary to a-transaminase (a-TA) such as AspTA. Here, we propose in silico model on the reaction mechanism of w-TA. Based on the modeling results which showed large free energy gaps between external aldimine and quinonoid on deamination (or ketimine and quinonoid on amination), withdrawal of Ca-H seemed as a critical step which determines the reaction rate on both amination and deamination reactions, which is consistent with previous researches. Hyperconjugation was also observed in both external aldimine and ketimine which weakens Ca-H bond to elevate Ca-H abstraction.Keywords: computational modeling, reaction intermediates, w-transaminase, in silico model
Procedia PDF Downloads 5514066 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber
Authors: A. Bouloufa, K. Djessas
Abstract:
In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.Keywords: buffer layer, In2S3, optical properties, PVD, structural properties
Procedia PDF Downloads 3214065 Tuneability Sub-10-nm WO3 Nano-Flakes and Their Electrical Properties
Authors: S. Zhuiykov, E. Kats
Abstract:
Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nano scale using energy dispersive X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nano-structures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550ºC possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.Keywords: electrical properties, layered semiconductors, nano-flake, sol-gel, exfoliation WO3
Procedia PDF Downloads 2484064 Biogas Production from Kitchen Waste for a Household Sustainability
Authors: Vuiswa Lucia Sethunya, Tonderayi Matambo, Diane Hildebrandt
Abstract:
South African’s informal settlements produce tonnes of kitchen waste (KW) per year which is dumped into the landfill. These landfill sites are normally located in close proximity to the household of the poor communities; this is a problem in which the young children from those communities end up playing in these landfill sites which may result in some health hazards because of methane, carbon dioxide and sulphur gases which are produced. To reduce this large amount of organic materials being deposited into landfills and to provide a cleaner place for those within the community especially the children, an energy conversion process such as anaerobic digestion of the organic waste to produce biogas was implemented. In this study, the digestion of various kitchen waste was investigated in order to understand and develop a system that is suitable for household use to produce biogas for cooking. Three sets of waste of different nutritional compositions were digested as per acquired in the waste streams of a household at mesophilic temperature (35ᵒC). These sets of KW were co-digested with cow dung (CW) at different ratios to observe the microbial behaviour and the system’s stability in a laboratory scale system. The gas chromatography-flame ionization detector analyses have been performed to identify and quantify the presence of organic compounds in the liquid samples from co-digested and mono-digested food waste. Acetic acid, propionic acid, butyric acid and valeric acid are the fatty acids which were studied. Acetic acid (1.98 g/L), propionic acid (0.75 g/L) and butyric acid (2.16g/L) were the most prevailing fatty acids. The results obtained from organic acids analysis suggest that the KW can be an innovative substituent to animal manure for biogas production. The faster degradation period in which the microbes break down the organic compound to produce the fatty acids during the anaerobic process of KW also makes it a better feedstock during high energy demand periods. The C/N ratio analysis showed that from the three waste streams the first stream containing vegetables (55%), fruits (16%), meat (25%) and pap (4%) yielded more methane-based biogas of 317mL/g of volatile solids (VS) at C/N of 21.06. Generally, this shows that a household will require a heterogeneous composition of nutrient-based waste to be fed into the digester to acquire the best biogas yield to sustain a households cooking needs.Keywords: anaerobic digestion, biogas, kitchen waste, household
Procedia PDF Downloads 2024063 Using Hemicellulosic Liquor from Sugarcane Bagasse to Produce Second Generation Lactic Acid
Authors: Regiane A. Oliveira, Carlos E. Vaz Rossell, Rubens Maciel Filho
Abstract:
Lactic acid, besides a valuable chemical may be considered a platform for other chemicals. In fact, the feasibility of hemicellulosic sugars as feedstock for lactic acid production process, may represent the drop of some of the barriers for the second generation bioproducts, especially bearing in mind the 5-carbon sugars from the pre-treatment of sugarcane bagasse. Bearing this in mind, the purpose of this study was to use the hemicellulosic liquor from sugarcane bagasse as a substrate to produce lactic acid by fermentation. To release of sugars from hemicellulose it was made a pre-treatment with a diluted sulfuric acid in order to obtain a xylose's rich liquor with low concentration of inhibiting compounds for fermentation (≈ 67% of xylose, ≈ 21% of glucose, ≈ 10% of cellobiose and arabinose, and around 1% of inhibiting compounds as furfural, hydroxymethilfurfural and acetic acid). The hemicellulosic sugars associated with 20 g/L of yeast extract were used in a fermentation process with Lactobacillus plantarum to produce lactic acid. The fermentation process pH was controlled with automatic injection of Ca(OH)2 to keep pH at 6.00. The lactic acid concentration remained stable from the time when the glucose was depleted (48 hours of fermentation), with no further production. While lactic acid is produced occurs the concomitant consumption of xylose and glucose. The yield of fermentation was 0.933 g lactic acid /g sugars. Besides, it was not detected the presence of by-products, what allows considering that the microorganism uses a homolactic fermentation to produce its own energy using pentose-phosphate pathway. Through facultative heterofermentative metabolism the bacteria consume pentose, as is the case of L. plantarum, but the energy efficiency for the cell is lower than during the hexose consumption. This implies both in a slower cell growth, as in a reduction in lactic acid productivity compared with the use of hexose. Also, L. plantarum had shown to have a capacity for lactic acid production from hemicellulosic hydrolysate without detoxification, which is very attractive in terms of robustness for an industrial process. Xylose from hydrolyzed bagasse and without detoxification is consumed, although the hydrolyzed bagasse inhibitors (especially aromatic inhibitors) affect productivity and yield of lactic acid. The use of sugars and the lack of need for detoxification of the C5 liquor from sugarcane bagasse hydrolyzed is a crucial factor for the economic viability of second generation processes. Taking this information into account, the production of second generation lactic acid using sugars from hemicellulose appears to be a good alternative to the complete utilization of sugarcane plant, directing molasses and cellulosic carbohydrates to produce 2G-ethanol, and hemicellulosic carbohydrates to produce 2G-lactic acid.Keywords: fermentation, lactic acid, hemicellulosic sugars, sugarcane
Procedia PDF Downloads 3774062 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone
Authors: Moustafa Osman Mohammed
Abstract:
Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.Keywords: construction ecology, industrial ecology, urban topology, environmental planning
Procedia PDF Downloads 1374061 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment
Authors: Kweon Oh-Sang, Kim Heung-Youl
Abstract:
Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter
Procedia PDF Downloads 3414060 Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances
Authors: Walter Evaldo Kuchenbecker, Julio Carlos Teixeira
Abstract:
Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed.Keywords: permanent magnet generators (pmg), synchronous machine parameters, test procedures, inductances
Procedia PDF Downloads 3084059 A Review of the Agroecological Farming System as a Viable Alternative Food Production Approach in South Africa
Authors: Michael Rudolph, Evans Muchesa, Katiya Yassim, Venkatesha Prasad
Abstract:
Input-intensive production systems characterise industrial agriculture as an unsustainable means to address food and nutrition security and sustainable livelihoods. There is extensive empirical evidence that supports the diversification and reorientation of industrial agriculture and that incorporates ecological practices viewed as essential for achieving balanced and productive farming systems. An agroecological farming system is a viable alternative approach that can improve food production, especially for the most vulnerable communities and households. Furthermore, substantial proof and supporting evidence show that such a system holds the key to increasing dietary diversity at the local level and reducing the multiple health and environmental risks stemming from industrial agriculture. This paper, therefore, aims to demonstrate the benefits of the agroecology food system through an evidenced-based approach that shows how the broader agricultural network structures can play a meaningful role, particularly for impoverished households in today’s reality. The methodology is centered on a structured literature review that analyses urban agriculture, agroecology, and food insecurity. Notably, ground-truthing, practical experiences, and field observation of agroecological farming were deployed. This paper places particular emphasis on the practical application of the agroecological approach in urban and peri-urban settings. Several evaluation reports on local and provincial initiatives clearly show that very few households engage in food gardens and urban agriculture. These households do not make use of their backyards or nearby open spaces for a number of reasons, such as stringent city by-laws, restricted access to land, little or no knowledge of innovative or alternative farming practices, and a general lack of interest. Furthermore, limited resources such as water and energy and lack of capacity building and training implementation are additional constraints that are hampering small scale food gardens and farms in other settings. The Agroecology systems approach is viewed as one of the key solutions to tackling these problems.Keywords: agroecology, water-energy-food nexus, sutainable development goals, social, environmental and economc impact
Procedia PDF Downloads 1164058 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane
Authors: Aziz Ghoufi, Ayman Kanaan
Abstract:
Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels
Procedia PDF Downloads 254057 Urban Compactness and Sustainability: Beijing Experience
Authors: Xilu Liu, Ameen Farooq
Abstract:
Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.Keywords: Beijing, density, sustainability, urban compactness
Procedia PDF Downloads 427