Search results for: data mining applications and discovery
26554 Students' ExperiEnce Enhancement Through Simulaton. A Process Flow in Logistics and Transportation Field
Authors: Nizamuddin Zainuddin, Adam Mohd Saifudin, Ahmad Yusni Bahaudin, Mohd Hanizan Zalazilah, Roslan Jamaluddin
Abstract:
Students’ enhanced experience through simulation is a crucial factor that brings reality to the classroom. The enhanced experience is all about developing, enriching and applications of a generic process flow in the field of logistics and transportations. As educational technology has improved, the effective use of simulations has greatly increased to the point where simulations should be considered a valuable, mainstream pedagogical tool. Additionally, in this era of ongoing (some say never-ending) assessment, simulations offer a rich resource for objective measurement and comparisons. Simulation is not just another in the long line of passing fads (or short-term opportunities) in educational technology. It is rather a real key to helping our students understand the world. It is a way for students to acquire experience about how things and systems in the world behave and react, without actually touching them. In short, it is about interactive pretending. Simulation is all about representing the real world which includes grasping the complex issues and solving intricate problems. Therefore, it is crucial before stimulate the real process of inbound and outbound logistics and transportation a generic process flow shall be developed. The paper will be focusing on the validization of the process flow by looking at the inputs gains from the sample. The sampling of the study focuses on multi-national and local manufacturing companies, third party companies (3PL) and government agency, which are selected in Peninsular Malaysia. A simulation flow chart was proposed in the study that will be the generic flow in logistics and transportation. A qualitative approach was mainly conducted to gather data in the study. It was found out from the study that the systems used in the process of outbound and inbound are System Application Products (SAP) and Material Requirement Planning (MRP). Furthermore there were some companies using Enterprises Resources Planning (ERP) and Electronic Data Interchange (EDI) as part of the Suppliers Own Inventories (SOI) networking as a result of globalized business between one countries to another. Computerized documentations and transactions were all mandatory requirement by the Royal Custom and Excise Department. The generic process flow will be the basis of developing a simulation program that shall be used in the classroom with the objective of further enhanced the students’ learning experience. Thus it will contributes to the body of knowledge on the enrichment of the student’s employability and also shall be one of the way to train new workers in the logistics and transportation filed.Keywords: enhancement, simulation, process flow, logistics, transportation
Procedia PDF Downloads 33126553 Identification of Factors and Impacts on the Success of Implementing Extended Enterprise Resource Planning: Case Study of Manufacturing Industries in East Java, Indonesia
Authors: Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana, Widjojo Suprapto
Abstract:
The ERP is integrating all data from various departments within the company into one data base. One department inputs the data and many other departments can access and use the data through the connected information system. As many manufacturing companies in Indonesia implement the ERP technology, many adjustments are to be made to align with the business process in the companies, especially the management policy and the competitive advantages. For companies that are successful in the initial implementation, they still have to maintain the process so that the initial success can develop along with the changing of business processes of the company. For companies which have already implemented the ERP successfully, they are still in need to maintain the system so that it can match up with the business development and changes. The continued success of the extended ERP implementation aims to achieve efficient and effective performance for the company. This research is distributing 100 questionnaires to manufacturing companies in East Java, Indonesia, which have implemented and have going live ERP for over five years. There are 90 returned questionnaires with ten disqualified questionnaires because they are from companies that implement ERP less than five years. There are only 80 questionnaires used as the data, with the response rate of 80%. Based on the data results and analysis with PLS (Partial Least Square), it is obtained that the organization commitment brings impacts to the user’s effectiveness and provides the adequate IT infrastructure. The user’s effectiveness brings impacts to the adequate IT infrastructure. The information quality of the company increases the implementation of the extended ERP in manufacturing companies in East Java, Indonesia.Keywords: organization commitment, adequate IT infrastructure, information quality, extended ERP implementation
Procedia PDF Downloads 17026552 Application of Enzyme-Mediated Calcite Precipitation for Surface Control of Gold Mining Tailing Waste
Authors: Yogi Priyo Pradana, Heriansyah Putra, Regina Aprilia Zulfikar, Maulana Rafiq Ramadhan, Devyan Meisnnehr, Zalfa Maulida Insani
Abstract:
This paper studied the effects and mechanisms of fine-grained tailing by Enzyme-Mediated Calcite Precipitation (EMCP). Grouting solution used consists of reagents (CaCl₂ and (CO(NH₂)₂) and urease enzymes which react to produce CaCO₃. In sample preparation, the test tube is used to investigate the precipitation rate of calcite. The grouting solution added is 75 mL for one mold sample. The solution was poured into a mold sample up to as high as 5 mm from the top surface of the tailing to ensure the entire surface is submerged. The sample is left open in a cylinder for up to 3 days for curing. The direct mixing method is conducted so that the cementation process occurs by evenly distributed. The relationship between the results of the UCS test and the calcite precipitation rate likely indicates that the amount of calcite deposited in treated tailing could control the strength of the tailing. The sample results are analyzed using atomic absorption spectroscopy (AAS) to evaluate metal and metalloid content. Calcium carbonate deposited in the tailing is expected to strengthen the bond between tailing granules, which are easily slipped on the banks of the tailing dam. The EMCP method is expected to strengthen tailing in erosion-control surfaces.Keywords: tailing, EMCP, UCS, AAS
Procedia PDF Downloads 14126551 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 11226550 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure
Authors: Mona Shojaei
Abstract:
The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings
Procedia PDF Downloads 2126549 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 58426548 Investigating the Biosorption Potential of Indigenous Filamentous Fungi from Copperbelt Tailing Dams in Zambia with Copper and Cobalt Tolerance
Authors: Leonce Dusengemungu
Abstract:
Filamentous fungi indigenous to heavy metals (HMs) contaminated environments have a considerable biosorption potential yet are currently under-investigated in developing countries. In the work presented herein, the biosorption potential of three indigenous filamentous fungi (Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum) isolated from copper and cobalt mining wasteland sites in Zambia's Copperbelt province was investigated. In Cu and Co tolerance tests, all the fungal isolates were shown to be tolerant, with mycelial growth at HMs concentrations of up to 7000 ppm. However, exposure to high Cu and Co concentrations hindered the growth of the three strains to varying degrees, resulting in reduced mycelial biomass (evidenced by loss of the infrared bands at 887 and 930 cm-1 of the 1,3-glucans backbone) as well as morphological alterations, sporulation, and pigment synthesis. In addition, gas chromatography-mass spectrometry characterization of the fungal biomass extracts allowed to detect changes in the chemical constituents upon exposure to HMs, with profiles poorer in maltol, 1,2-cyclopentadione, and n-hexadecanoic acid, and richer in furaldehydes. Biosorption tests showed that A. transmontanensis and G. candidum showed better performance as bioremediators than C. cladosporioides, with biosorption efficiencies of 1645, 1853 and 1253 ppm at pH 3, respectively, and may deserve further research in field conditions.Keywords: bioremediation, fungi, biosorption, heavy metal
Procedia PDF Downloads 6826547 IoT Based Monitoring Temperature and Humidity
Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya
Abstract:
Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS
Procedia PDF Downloads 28526546 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time
Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao
Abstract:
The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations
Procedia PDF Downloads 7826545 Impacts of Building Design Factors on Auckland School Energy Consumptions
Authors: Bin Su
Abstract:
This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.Keywords: building energy efficiency, building thermal design, building thermal performance, school building design
Procedia PDF Downloads 44526544 Repair of Thermoplastic Composites for Structural Applications
Authors: Philippe Castaing, Thomas Jollivet
Abstract:
As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic
Procedia PDF Downloads 30626543 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 2126542 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 4826541 The Meta–Evaluation of Master Degree Theses in Science Program of Evaluation Methodology, Srinakharinwirot University
Authors: Panwasn Mahalawalert
Abstract:
The objective of this study was to meta-evaluation of Master Degree theses in Science Program of Evaluation Methodology at Srinakharinwirot University, published during 2008-2011. This study was summative meta-evaluation that evaluated all theses of Master Degree in Science Program of Evaluation Methodology. Data were collected using the theses characteristics recording form and the evaluation meta-evaluation checklist. The collected data were analyzed by two parts: 1) Quantitative data were analyzed by descriptive statistics presented in frequency, percentages, mean, and standard deviation and 2) Qualitative data were analyzed by content analysis. The results of this study were found the theses characteristics was results revealed that most of theses were published in 2011. The largest group of theses researcher were female and were from the government office. The evaluation model of all theses were Decision-Oriented Evaluation Model. The objective of all theses were evaluate the project or curriculum. The most sampling technique were used the multistage random sampling technique. The most tool were used to gathering the data were questionnaires. All of the theses were analysed by descriptive statistics. The meta-evaluation results revealed that most of theses had fair on Utility Standards and Feasibility Standards, good on Propriety Standards and Accuracy Standards.Keywords: meta-evaluation, evaluation, master degree theses, Srinakharinwirot University
Procedia PDF Downloads 54226540 Re-Stating the Origin of Tetrapod Using Measures of Phylogenetic Support for Phylogenomic Data
Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou
Abstract:
Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to re-investigate the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high internode certainty, relative gene support, and high gene concordance factor. The evidence stems from five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup, such as slow-evolving species, while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.Keywords: novel measures of phylogenetic support for phylogenomic data, gene concordance factor confidence, relative gene support, internode certainty, origin of tetrapods
Procedia PDF Downloads 6626539 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 6826538 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 37526537 Analyzing Keyword Networks for the Identification of Correlated Research Topics
Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics
Procedia PDF Downloads 26426536 A New Approach towards the Development of Next Generation CNC
Authors: Yusri Yusof, Kamran Latif
Abstract:
Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC
Procedia PDF Downloads 51926535 A Study on the Establishment of a 4-Joint Based Motion Capture System and Data Acquisition
Authors: Kyeong-Ri Ko, Seong Bong Bae, Jang Sik Choi, Sung Bum Pan
Abstract:
A simple method for testing the posture imbalance of the human body is to check for differences in the bilateral shoulder and pelvic height of the target. In this paper, to check for spinal disorders the authors have studied ways to establish a motion capture system to obtain and express motions of 4-joints, and to acquire data based on this system. The 4 sensors are attached to the both shoulders and pelvis. To verify the established system, the normal and abnormal postures of the targets listening to a lecture were obtained using the established 4-joint based motion capture system. From the results, it was confirmed that the motions taken by the target was identical to the 3-dimensional simulation.Keywords: inertial sensor, motion capture, motion data acquisition, posture imbalance
Procedia PDF Downloads 51926534 Target-Triggered DNA Motors and their Applications to Biosensing
Authors: Hongquan Zhang
Abstract:
Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification
Procedia PDF Downloads 8926533 Predictive Analytics in Oil and Gas Industry
Authors: Suchitra Chnadrashekhar
Abstract:
Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.Keywords: hydrocarbon, information technology, SAS, predictive analytics
Procedia PDF Downloads 36726532 Urban Change Detection and Pattern Analysis Using Satellite Data
Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha
Abstract:
In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.Keywords: urban change, satellite data, the Chennai metropolis, change detection
Procedia PDF Downloads 41326531 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.Keywords: asthma, environmental triggers, map interface, web-based systems
Procedia PDF Downloads 29626530 Carbon based Smart Materials: Functional Carbon for Lightweight Automotive Component 3D Printing
Authors: Mohammad M. Garmabia, Peyman Shahia, Jimi Tjonga, Mohini Saina
Abstract:
Flame retardant composite filaments with functional carbon in the composition were fabricated, and printed parts showed enhancedcrash resistance pproperties and imporved EMI shielding. The negligible mass difference after prolonged immersion in automobile chemicals revealed the outstanding performance of parts for under-the-hood high-temperature applications.Keywords: FDM, crash worthy, EMI Shield, lightweight, automotive parts
Procedia PDF Downloads 10226529 A Review of Soil Stabilization Techniques
Authors: Amin Chegenizadeh, Mahdi Keramatikerman
Abstract:
Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.Keywords: review, soil, stabilization, techniques
Procedia PDF Downloads 54926528 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.Keywords: copper-CO2 nanofluid, molecular dynamics simulation, molecular interfacial layer, thermal conductivity
Procedia PDF Downloads 34026527 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam
Authors: Ellen Nhedzi Gozo
Abstract:
Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management
Procedia PDF Downloads 34226526 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors
Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa
Abstract:
PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid
Procedia PDF Downloads 44426525 A Bayesian Model with Improved Prior in Extreme Value Problems
Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro
Abstract:
In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior
Procedia PDF Downloads 201