Search results for: rapid manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4452

Search results for: rapid manufacturing

132 An Investigation into Why Very Few Small Start-Ups Business Survive for Longer Than Three Years: An Explanatory Study in the Context of Saudi Arabia

Authors: Motaz Alsolaim

Abstract:

Nowadays, the challenges of running a start-up can be very complex and are perhaps more difficult than at any other time in the past. Changes in technology, manufacturing innovation, and product development, combined with intense competition and market regulations are factors that have put pressure on classic ways of managing firms, thereby forcing change. As a result, the rate of closure, exit or discontinuation of start-ups and young businesses is very high. Despite the essential role of small firms in an economy, they still tend to face obstacles that exert a negative influence on their performance and rate of survival. In fact, it is not easy to determine with any certainty the reasons why small firms fail. For this reason, failure itself is not clearly defined, and its exact causes are hard to diagnose. In this current study, therefore, the barriers to survival will be covered more broadly, especially personal/entrepreneurial, enterprise and environmental factors with regard to various possible reasons for this failure, in order to determine the best solutions and make appropriate recommendations. Methodology: It could be argued that mixed methods might help to improve entrepreneurship research addressing challenges emphasis in previous studies and to achieve the triangulation. Calls for the combined use of quantitative and qualitative research were also made in the entrepreneurship field since entrepreneurship is a multi-faceted area of research. Therefore, explanatory sequential mixed method was used, using questionnaire online survey for entrepreneurs, followed by semi-structure interview. Collecting over 750 surveys and accepting 296 valid surveys, after that 13 interviews from government official seniors, businessmen successful entrepreneurs, and non-successful entrepreneurs. Findings: The first phase findings ( quantitative) shows the obstacles to survive; starting from the personal/ entrepreneurial factors such as; past work experience, lack of skills and interest, are positive factors, while; gender, age and education level of the owner are negative factors. Internal factors such as lack of marketing research and weak business planning are positive. The environmental factors; in economic perspectives; difficulty to find labors, in socio-cultural perspectives; Social restriction and traditions found to be a negative factors. In other hand, from the political perspective; cost of compliance and insufficient government plans found to be a positive factors for small business failure. From infrastructure perspective; lack of skills labor, high level of bureaucracy and lack of information are positive factors. Conclusion: This paper serves to enrich the understanding of failure factors in MENA region more precisely in SA, by minimizing the probability of failure in small-micro entrepreneurial start-up in SA, in the light of the Saudi government’s Vision 2030 plan.

Keywords: small business barriers, start-up business, entrepreneurship, Saudi Arabia

Procedia PDF Downloads 177
131 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 147
130 The Dynamic Nexus of Public Health and Journalism in Informed Societies

Authors: Ali Raza

Abstract:

The dynamic landscape of communication has brought about significant advancements that intersect with the realms of public health and journalism. This abstract explores the evolving synergy between these fields, highlighting how their intersection has contributed to informed societies and improved public health outcomes. In the digital age, communication plays a pivotal role in shaping public perception, policy formulation, and collective action. Public health, concerned with safeguarding and improving community well-being, relies on effective communication to disseminate information, encourage healthy behaviors, and mitigate health risks. Simultaneously, journalism, with its commitment to accurate and timely reporting, serves as the conduit through which health information reaches the masses. Advancements in communication technologies have revolutionized the ways in which public health information is both generated and shared. The advent of social media platforms, mobile applications, and online forums has democratized the dissemination of health-related news and insights. This democratization, however, brings challenges, such as the rapid spread of misinformation and the need for nuanced strategies to engage diverse audiences. Effective collaboration between public health professionals and journalists is pivotal in countering these challenges, ensuring that accurate information prevails. The synergy between public health and journalism is most evident during public health crises. The COVID-19 pandemic underscored the pivotal role of journalism in providing accurate and up-to-date information to the public. However, it also highlighted the importance of responsible reporting, as sensationalism and misinformation could exacerbate the crisis. Collaborative efforts between public health experts and journalists led to the amplification of preventive measures, the debunking of myths, and the promotion of evidence-based interventions. Moreover, the accessibility of information in the digital era necessitates a strategic approach to health communication. Behavioral economics and data analytics offer insights into human decision-making and allow tailored health messages to resonate more effectively with specific audiences. This approach, when integrated into journalism, enables the crafting of narratives that not only inform but also influence positive health behaviors. Ethical considerations emerge prominently in this alliance. The responsibility to balance the public's right to know with the potential consequences of sensational reporting underscores the significance of ethical journalism. Health journalists must meticulously source information from reputable experts and institutions to maintain credibility, thus fortifying the bridge between public health and the public. As both public health and journalism undergo transformative shifts, fostering collaboration between these domains becomes essential. Training programs that familiarize journalists with public health concepts and practices can enhance their capacity to report accurately and comprehensively on health issues. Likewise, public health professionals can gain insights into effective communication strategies from seasoned journalists, ensuring that health information reaches a wider audience. In conclusion, the convergence of public health and journalism, facilitated by communication advancements, is a cornerstone of informed societies. Effective communication strategies, driven by collaboration, ensure the accurate dissemination of health information and foster positive behavior change. As the world navigates complex health challenges, the continued evolution of this synergy holds the promise of healthier communities and a more engaged and educated public.

Keywords: public awareness, journalism ethics, health promotion, media influence, health literacy

Procedia PDF Downloads 70
129 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 191
128 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 57
127 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 135
126 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness

Procedia PDF Downloads 96
125 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 258
124 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 202
123 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona

Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz

Abstract:

Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.

Keywords: census, empirical modeling, heat-related morbidity, spatial analysis

Procedia PDF Downloads 126
122 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 226
121 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 117
120 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators

Authors: K. O'Malley

Abstract:

Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.

Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university

Procedia PDF Downloads 32
119 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China

Authors: Liuhui Zhu, Peng Zeng

Abstract:

With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.

Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model

Procedia PDF Downloads 137
118 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 127
117 An Impact Assesment of Festive Events on Sustainable Cultural Heritage: İdrisyayla Village

Authors: Betül Gelengül Eki̇mci̇, Semra Günay Aktaş

Abstract:

Festive, habitual activities celebrated on the specified date by a local community, are conducive to recognition of the region. The main function of festive events is to help gathering people via an annual celebration to create an atmosphere of understanding and the opportunity to participate in the joy of life. At the same time, festive events may serve as special occasions on which immigrants return home to celebrate with their family and community, reaffirming their identity and link to the community’s traditions. Festivals also support the local economy by bringing in different visitors to the region. The tradition of “Beet Brewing-Molasses Production,” which is held in İdrisyayla Village is an intangible cultural heritage with customs, traditions, and rituals carrying impacts of cuisine culture of Rumelian immigrants in the Ottoman. After the harvest of the beet plant in the autumn season of the year, Beet Brewing Molasses syrup is made by traditional production methods with co-op of the local community. Festive occurring brewing paste made process provided transmission of knowledge and experience to the young generations. Making molasses, which is a laborious process, is accompanied by folk games such as "sayacı," which is vital element of the festive performed in İdrisyayla. Performance provides enjoyable time and supporting motivation. Like other forms of intangible cultural heritage, “Beet Brewing-Molasses Festive in İdrasyayla is threatened by rapid urbanisation, young generation migration, industrialisation and environmental change. The festive events are threatened with gradual disappearance due to changes communities undergo in modern societies because it depends on the broad participation of practitioners. Ensuring the continuity of festive events often requires the mobilization of large numbers of individuals and the social, political and legal institutions and mechanisms of society. In 2015, Intangible cultural heritage research project with the title of "İdrisyayla Molasses Process" managed by the Eskişehir Governorship, City Directorate of Culture and Tourism and Anadolu University, project members took part in the festival organization to promote sustainability, making it visible, to encourage the broadest public participation possible, to ensure public awareness on the cultural importance. To preserve the originality of and encourage participation in the festive İdrisyayla, local associations, researchers and institutions created foundation and supports festive events, such as "sayacı" folk game, which is vital element of the festive performed in İdrisyayla. Practitioners find new opportunity to market İdrisyayla Molasses production. Publicity program through the press and exhibition made it possible to stress the cultural importance of the festive in İdrisyayla Village. The research reported here used a survey analysis to evaluate an affect of the festive after the spirit of the 2015 Festive in İdrisyayla Village. Particular attention was paid to the importance of the cultural aspects of the festival. Based on a survey of more than a hundred festival attendees, several recommendations are made to festival planners. Results indicate that the variety of festive activities and products offered for sale very important to attendees. The local participants care product sales rather than cultural heritage.

Keywords: agritourism, cultural tourism, festival, sustainable cultural heritage

Procedia PDF Downloads 221
116 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 66
115 Prevalence and Diagnostic Evaluation of Schistosomiasis in School-Going Children in Nelson Mandela Bay Municipality: Insights from Urinalysis and Point-of-Care Testing

Authors: Maryline Vere, Wilma ten Ham-Baloyi, Lucy Ochola, Opeoluwa Oyedele, Lindsey Beyleveld, Siphokazi Tili, Takafira Mduluza, Paula E. Melariri

Abstract:

Schistosomiasis, caused by Schistosoma (S.) haematobium and Schistosoma (S.) mansoni parasites poses a significant public health challenge in low-income regions. Diagnosis typically relies on identifying specific urine biomarkers such as haematuria, protein, and leukocytes for S. haematobium, while the Point-of-Care Circulating Cathodic Antigen (POC-CCA) assay is employed for detecting S. mansoni. Urinalysis and the POC-CCA assay are favoured for their rapid, non-invasive nature and cost-effectiveness. However, traditional diagnostic methods such as Kato-Katz and urine filtration lack sensitivity in low-transmission areas, which can lead to underreporting of cases and hinder effective disease control efforts. Therefore, in this study, urinalysis and the POC-CCA assay was utilised to diagnose schistosomiasis effectively among school-going children in Nelson Mandela Bay Municipality. This was a cross-sectional study with a total of 759 children, aged 5 to 14 years, who provided urine samples. Urinalysis was performed using urinary dipstick tests, which measure multiple parameters, including haematuria, protein, leukocytes, bilirubin, urobilinogen, ketones, pH, specific gravity and other biomarkers. Urinalysis was performed by dipping the strip into the urine sample and observing colour changes on specific reagent pads. The POC-CCA test was conducted by applying a drop of urine onto a cassette containing CCA-specific antibodies, and the presence of a visible test line indicated a positive result for S. mansoni infection. Descriptive statistics were used to summarize urine parameters, and Pearson correlation coefficients (r) were calculated to analyze associations among urine parameters using R software (version 4.3.1). Among the 759 children, the prevalence of S. haematobium using haematuria as a diagnostic marker was 33.6%. Additionally, leukocytes were detected in 21.3% of the samples, and protein was present in 15%. The prevalence of positive POC-CCA test results for S. mansoni was 3.7%. Urine parameters exhibited low to moderate associations, suggesting complex interrelationships. For instance, specific gravity and pH showed a negative correlation (r = -0.37), indicating that higher specific gravity was associated with lower pH. Weak correlations were observed between haematuria and pH (r = -0.10), bilirubin and ketones (r = 0.14), protein and bilirubin (r = 0.13), and urobilinogen and pH (r = 0.12). A mild positive correlation was found between leukocytes and blood (r = 0.23), reflecting some association between these inflammation markers. In conclusion, the study identified a significant prevalence of schistosomiasis among school-going children in Nelson Mandela Bay Municipality, with S. haematobium detected through haematuria and S. mansoni identified using the POC-CCA assay. The detection of leukocytes and protein in urine samples serves as critical biomarkers for schistosomiasis infections, reinforcing the presence of schistosomiasis in the study area when considered alongside haematuria. These urine parameters are indicative of inflammatory responses associated with schistosomiasis, underscoring the necessity for effective diagnostic methodologies. Such findings highlight the importance of comprehensive diagnostic assessments to accurately identify and monitor schistosomiasis prevalence and its associated health impacts. The significant burden of schistosomiasis in this population highlights the urgent need to develop targeted control interventions to effectively reduce its prevalence in the study area.

Keywords: schistosomiasis, urinalysis, haematuria, POC-CCA

Procedia PDF Downloads 20
114 Metagenomic analysis of Irish cattle faecal samples using Oxford Nanopore MinION Next Generation Sequencing

Authors: Niamh Higgins, Dawn Howard

Abstract:

The Irish agri-food sector is of major importance to Ireland’s manufacturing sector and to the Irish economy through employment and the exporting of animal products worldwide. Infectious diseases and parasites have an impact on farm animal health causing profitability and productivity to be affected. For the sustainability of Irish dairy farming, there must be the highest standard of animal health. There can be a lack of information in accounting for > 1% of complete microbial diversity in an environment. There is the tendency of culture-based methods of microbial identification to overestimate the prevalence of species which grow easily on an agar surface. There is a need for new technologies to address these issues to assist with animal health. Metagenomic approaches provide information on both the whole genome and transcriptome present through DNA sequencing of total DNA from environmental samples producing high determination of functional and taxonomic information. Nanopore Next Generation Technologies have the ability to be powerful sequencing technologies. They provide high throughput, low material requirements and produce ultra-long reads, simplifying the experimental process. The aim of this study is to use a metagenomics approach to analyze dairy cattle faecal samples using the Oxford Nanopore MinION Next Generation Sequencer and to establish an in-house pipeline for metagenomic characterization of complex samples. Faecal samples will be obtained from Irish dairy farms, DNA extracted and the MinION will be used for sequencing, followed by bioinformatics analysis. Of particular interest, will be the parasite Buxtonella sulcata, which there has been little research on and which there is no research on its presence on Irish dairy farms. Preliminary results have shown the ability of the MinION to produce hundreds of reads in a relatively short time frame of eight hours. The faecal samples were obtained from 90 dairy cows on a Galway farm. The results from Oxford Nanopore ‘What’s in my pot’ (WIMP) using the Epi2me workflow, show that from a total of 926 classified reads, 87% were from the Kingdom Bacteria, 10% were from the Kingdom Eukaryota, 3% were from the Kingdom Archaea and < 1% were from the Kingdom Viruses. The most prevalent bacteria were those from the Genus Acholeplasma (71 reads), Bacteroides (35 reads), Clostridium (33 reads), Acinetobacter (20 reads). The most prevalent species present were those from the Genus Acholeplasma and included Acholeplasma laidlawii (39 reads) and Acholeplasma brassicae (26 reads). The preliminary results show the ability of the MinION for the identification of microorganisms to species level coming from a complex sample. With ongoing optimization of the pipe-line, the number of classified reads are likely to increase. Metagenomics has the potential in animal health for diagnostics of microorganisms present on farms. This would support wprevention rather than a cure approach as is outlined in the DAFMs National Farmed Animal Health Strategy 2017-2022.

Keywords: animal health, buxtonella sulcata, infectious disease, irish dairy cattle, metagenomics, minION, next generation sequencing

Procedia PDF Downloads 150
113 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 178
112 Impact of Lack of Testing on Patient Recovery in the Early Phase of COVID-19: Narratively Collected Perspectives from a Remote Monitoring Program

Authors: Nicki Mohammadi, Emma Reford, Natalia Romano Spica, Laura Tabacof, Jenna Tosto-Mancuso, David Putrino, Christopher P. Kellner

Abstract:

Introductory Statement: The onset of the COVID-19 pandemic demanded an unprecedented need for the rapid development, dispersal, and application of infection testing. However, despite the impressive mobilization of resources, individuals were incredibly limited in their access to tests, particularly during the initial months of the pandemic (March-April 2020) in New York City (NYC). Access to COVID-19 testing is crucial in understanding patients’ illness experiences and integral to the development of COVID-19 standard-of-care protocols, especially in the context of overall access to healthcare resources. Succinct Description of basic methodologies: 18 Patients in a COVID-19 Remote Patient Monitoring Program (Precision Recovery within the Mount Sinai Health System) were interviewed regarding their experience with COVID-19 during the first wave (March-May 2020) of the COVID-19 pandemic in New York City. Patients were asked about their experiences navigating COVID-19 diagnoses, the health care system, and their recovery process. Transcribed interviews were analyzed for thematic codes, using grounded theory to guide the identification of emergent themes and codebook development through an iterative process. Data coding was performed using NVivo12. References for the domain “testing” were then extracted and analyzed for themes and statistical patterns. Clear Indication of Major Findings of the study: 100% of participants (18/18) referenced COVID-19 testing in their interviews, with a total of 79 references across the 18 transcripts (average: 4.4 references/interview; 2.7% interview coverage). 89% of participants (16/18) discussed the difficulty of access to testing, including denial of testing without high severity of symptoms, geographical distance to the testing site, and lack of testing resources at healthcare centers. Participants shared varying perspectives on how the lack of certainty regarding their COVID-19 status affected their course of recovery. One participant shared that because she never tested positive she was shielded from her anxiety and fear, given the death toll in NYC. Another group of participants shared that not having a concrete status to share with family, friends and professionals affected how seriously onlookers took their symptoms. Furthermore, the absence of a positive test barred some individuals from access to treatment programs and employment support. Concluding Statement: Lack of access to COVID-19 testing in the first wave of the pandemic in NYC was a prominent element of patients’ illness experience, particularly during their recovery phase. While for some the lack of concrete results was protective, most emphasized the invalidating effect this had on the perception of illness for both self and others. COVID-19 testing is now widely accessible; however, those who are unable to demonstrate a positive test result but who are still presumed to have had COVID-19 in the first wave must continue to adapt to and live with the effects of this gap in knowledge and care on their recovery. Future efforts are required to ensure that patients do not face barriers to care due to the lack of testing and are reassured regarding their access to healthcare. Affiliations- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 2Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY

Keywords: accessibility, COVID-19, recovery, testing

Procedia PDF Downloads 193
111 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 102
110 A Multimodal Discourse Analysis of Gender Representation on Health and Fitness Magazine Cover Pages

Authors: Nashwa Elyamany

Abstract:

In visual cultures, namely that of the United States, media representations are such influential and pervasive reflections of societal norms and expectations to the extent that they impact the manner in which both genders view themselves. Health and fitness magazines fall within the realm of visual culture. Since the main goal of communication is to ensure proper dissemination of information in order for the target audience to grasp the intended messages, it becomes imperative that magazine publishers, editors, advertisers and image producers use different modes of communication within their reach to convey messages to their readers and viewers. A rapid waxing flow of multimodality floods popular discourse, particularly health and fitness magazine cover pages. The use of well-crafted cover lines and visual images is imbued with agendas, consumerist ideologies and properties capable of effectively conveying implicit and explicit meaning to potential readers and viewers. In essence, the primary goal of this thesis is to interrogate the multi-semiotic operations and manifestations of hegemonic masculinity and femininity in male and female body culture, particularly on the cover pages of the twin American magazines Men's Health and Women's Health using corpora that spanned from 2011 to the mid of 2016. The researcher explores the semiotic resources that contribute to shaping and legitimizing a new form of postmodern, consumerist, gendered discourse that positions the reader-viewer ideologically. Methodologically, the researcher carries out analysis on the macro and micro levels. On the macro level, the researcher takes on a critical stance to illuminate the ideological nature of the multimodal ensemble of the cover pages, and, on the micro level, seeks to put forward new theoretical and methodological routes through which the semiotic choices well invested on the media texts can be more objectively scrutinized. On the macro level, a 'themes' analysis is initially conducted to isolate the overarching themes that dominate the fitness discourse on the cover pages under study. It is argued that variation in terms of frequencies of such themes is indicative, broadly speaking, of which facets of hegemonic masculinity and femininity are infused in the fitness discourse on the cover pages. On the micro level, this research work encompasses three sub-levels of analysis. The researcher follows an SF-MMDA approach, drawing on a trio of analytical frameworks: Halliday's SFG for the verbal analysis; Kress & van Leeuween's VG for the visual analysis; and CMT in relation to Sperber & Wilson's RT for the pragma-cognitive analysis of multimodal metaphors and metonymies. The data is presented in terms of detailed descriptions in conjunction with frequency tables, ANOVA with alpha=0.05 and MANOVA in the multiple phases of analysis. Insights and findings from this multi-faceted, social-semiotic analysis are interpreted in light of Cultivation Theory, Self-objectification Theory and the literature to date. Implications for future research include the implementation of a multi-dimensional approach whereby linguistic and visual analytical models are deployed with special regards to cultural variation.

Keywords: gender, hegemony, magazine cover page, multimodal discourse analysis, multimodal metaphor, multimodal metonymy, systemic functional grammar, visual grammar

Procedia PDF Downloads 349
109 Moodle-Based E-Learning Course Development for Medical Interpreters

Authors: Naoko Ono, Junko Kato

Abstract:

According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.

Keywords: e-learning, language education, moodle, medical interpreting

Procedia PDF Downloads 366
108 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation

Authors: Gianmarco Taveri, Ivo Dlouhy

Abstract:

Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.

Keywords: borosilicate glass, characterization, fly-ash, geopolymerization

Procedia PDF Downloads 208
107 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 86
106 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome

Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.

Abstract:

The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.

Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant

Procedia PDF Downloads 141
105 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
104 Manufacturing the Authenticity of Dokkaebi’s Visual Representation in Tourist Marketing

Authors: Mikyung Bak

Abstract:

The dokkaebi, a beloved icon of Korean culture, is represented as an elf, goblin, monster, dwarf, or any similar creature in different media, such as animated shows, comics, soap operas, and movies. It is often described as a mythical creature with a horn or horns and long teeth, wearing tiger-skin pants or a grass skirt, and carrying a magic stick. Many Korean researchers agree on the similarity of the image of the Korean dokkaebi with that of the Japanese oni, a view that is regard as negative from an anti-colonial or nationalistic standpoint. They cite such similarity between the two mythical creatures as evidence that Japanese colonialism persists in Korea. The debate on the originality of dokkaebi’s visual representation is an issue that must be addressed urgently. This research demonstrates through a diagram the plurality of interpretations of dokkaebi’s visual representations in what are considered ‘authentic’ images of dokkaebi in Korean art and culture. This diagram presents the opinions of four major groups in the debate, namely, the scholars of Korean literature and folklore, art historians, authors, and artists. It also shows the creation of new dokkaebi visual representations in popular media, including those influenced by the debate. The diagram further proves that dokkaebi’s representations varied, which include the typical persons or invisible characters found in Korean literature, original Korean folk characters in traditional art, and even universal spirit characters. They are also visually represented by completely new creatures as well as oni-based mythical beings and the actual oni itself. The earlier dokkaebi representations were driven by the creation of a national ideology or national cultural paradigm and, thus, were more uniform and protected. In contrast, the more recent representations are influenced by the Korean industrial strategy of ‘cultural economics,’ which is concerned with the international rather than the domestic market. This recent Korean cultural strategy emphasizes diversity and commonality with the global culture rather than originality and locality. It employs traditional cultural resources to construct a global image. Consequently, dokkaebi’s recent representations have become more common and diverse, thereby incorporating even oni’s characteristics. This argument has rendered the grounds of the debate irrelevant. The dokkaebi has been used recently for tourist marketing purposes, particularly in revitalizing interest in regions considered the cradle of various traditional dokkaebi tales. These campaign strategies include the Jeju-do Dokkaebi Park, Koksung Dokkaebi Land, as well as the Taebaek and Sokri-san Dokkaebi Festivals. Almost dokkaebi characters are identical to the Japanese oni in tourist marketing. However, the pursuit for dokkaebi’s authentic visual representation is less interesting and fruitful than the appreciation of the entire spectrum of dokkaebi images that have been created. Thus, scholars and stakeholders must not exclude the possibilities for a variety of potentials within the visual culture. The same sentiment applies to traditional art and craft. This study aims to contribute to a new visualization of the dokkaebi that embraces the possibilities of both folk craft and art, which continue to be uncovered by diverse and careful researchers in a still-developing field.

Keywords: Dokkaebi, post-colonial period, representation, tourist marketing

Procedia PDF Downloads 278
103 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 267