Search results for: machine modelling
243 Role of Grey Scale Ultrasound Including Elastography in Grading the Severity of Carpal Tunnel Syndrome - A Comparative Cross-sectional Study
Authors: Arjun Prakash, Vinutha H., Karthik N.
Abstract:
BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy with an estimated prevalence of 0.6 - 5.8% in the general adult population. It is caused by compression of the Median Nerve (MN) at the wrist as it passes through a narrow osteofibrous canal. Presently, the diagnosis is established by the clinical symptoms and physical examination and Nerve conduction study (NCS) is used to assess its severity. However, it is considered to be painful, time consuming and expensive, with a false-negative rate between 16 - 34%. Ultrasonography (USG) is now increasingly used as a diagnostic tool in CTS due to its non-invasive nature, increased accessibility and relatively low cost. Elastography is a newer modality in USG which helps to assess stiffness of tissues. However, there is limited available literature about its applications in peripheral nerves. OBJECTIVES: Our objectives were to measure the Cross-Sectional Area (CSA) and elasticity of MN at the carpal tunnel using Grey scale Ultrasonography (USG), Strain Elastography (SE) and Shear Wave Elastography (SWE). We also made an attempt to independently evaluate the role of Gray scale USG, SE and SWE in grading the severity of CTS, keeping NCS as the gold standard. MATERIALS AND METHODS: After approval from the Institutional Ethics Review Board, we conducted a comparative cross sectional study for a period of 18 months. The participants were divided into two groups. Group A consisted of 54 patients with clinically diagnosed CTS who underwent NCS, and Group B consisted of 50 controls without any clinical symptoms of CTS. All Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound machine with 2 - 9 Mega Hertz linear probe. In both groups, CSA of the MN was measured on Grey scale USG, and its elasticity was measured at the carpal tunnel (in terms of Strain ratio and Shear Modulus). The variables were compared between both groups by using ‘Independent t test’, and subgroup analyses were performed using one-way analysis of variance. Receiver operating characteristic curves were used to evaluate the diagnostic performance of each variable. RESULTS: The mean CSA of the MN was 13.60 + 3.201 mm2 and 9.17 + 1.665 mm2 in Group A and Group B, respectively (p < 0.001). The mean SWE was 30.65 + 12.996 kPa and 17.33 + 2.919 kPa in Group A and Group B, respectively (p < 0.001), and the mean Strain ratio was 7.545 + 2.017 and 5.802 + 1.153 in Group A and Group B respectively (p < 0.001). CONCLUSION: The combined use of Gray scale USG, SE and SWE is extremely useful in grading the severity of CTS and can be used as a painless and cost-effective alternative to NCS. Early diagnosis and grading of CTS and effective treatment is essential to avoid permanent nerve damage and functional disability.Keywords: carpal tunnel, ultrasound, elastography, nerve conduction study
Procedia PDF Downloads 101242 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture
Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán
Abstract:
Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing
Procedia PDF Downloads 93241 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 99240 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression
Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele
Abstract:
Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering
Procedia PDF Downloads 34239 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 178238 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.Keywords: bio-economy, investment risk, circular design, economic modelling
Procedia PDF Downloads 101237 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions
Authors: M. Eickermann, F. Ronellenfitsch, J. Junk
Abstract:
Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.Keywords: CORDEX projections, decision support tool, Brassica napus, pests
Procedia PDF Downloads 382236 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps
Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe
Abstract:
Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion
Procedia PDF Downloads 166235 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 388234 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 217233 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 147232 Knowledge Graph Development to Connect Earth Metadata and Standard English Queries
Authors: Gabriel Montague, Max Vilgalys, Catherine H. Crawford, Jorge Ortiz, Dava Newman
Abstract:
There has never been so much publicly accessible atmospheric and environmental data. The possibilities of these data are exciting, but the sheer volume of available datasets represents a new challenge for researchers. The task of identifying and working with a new dataset has become more difficult with the amount and variety of available data. Datasets are often documented in ways that differ substantially from the common English used to describe the same topics. This presents a barrier not only for new scientists, but for researchers looking to find comparisons across multiple datasets or specialists from other disciplines hoping to collaborate. This paper proposes a method for addressing this obstacle: creating a knowledge graph to bridge the gap between everyday English language and the technical language surrounding these datasets. Knowledge graph generation is already a well-established field, although there are some unique challenges posed by working with Earth data. One is the sheer size of the databases – it would be infeasible to replicate or analyze all the data stored by an organization like The National Aeronautics and Space Administration (NASA) or the European Space Agency. Instead, this approach identifies topics from metadata available for datasets in NASA’s Earthdata database, which can then be used to directly request and access the raw data from NASA. By starting with a single metadata standard, this paper establishes an approach that can be generalized to different databases, but leaves the challenge of metadata harmonization for future work. Topics generated from the metadata are then linked to topics from a collection of English queries through a variety of standard and custom natural language processing (NLP) methods. The results from this method are then compared to a baseline of elastic search applied to the metadata. This comparison shows the benefits of the proposed knowledge graph system over existing methods, particularly in interpreting natural language queries and interpreting topics in metadata. For the research community, this work introduces an application of NLP to the ecological and environmental sciences, expanding the possibilities of how machine learning can be applied in this discipline. But perhaps more importantly, it establishes the foundation for a platform that can enable common English to access knowledge that previously required considerable effort and experience. By making this public data accessible to the full public, this work has the potential to transform environmental understanding, engagement, and action.Keywords: earth metadata, knowledge graphs, natural language processing, question-answer systems
Procedia PDF Downloads 147231 Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow
Authors: Rajkumar Ghosh
Abstract:
Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents.Keywords: rooftop rainwater harvesting, rainwater, water management, aquifer
Procedia PDF Downloads 95230 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant
Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula
Abstract:
Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning
Procedia PDF Downloads 133229 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene
Authors: Małgorzata Golonka, Jadwiga Laska
Abstract:
Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.Keywords: self-healing polymers, polyethylene, microcapsules, extrusion
Procedia PDF Downloads 28228 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 92227 Factors Influencing Consumer Adoption of Digital Banking Apps in the UK
Authors: Sevelina Ndlovu
Abstract:
Financial Technology (fintech) advancement is recognised as one of the most transformational innovations in the financial industry. Fintech has given rise to internet-only digital banking, a novel financial technology advancement, and innovation that allows banking services through internet applications with no need for physical branches. This technology is becoming a new banking normal among consumers for its ubiquitous and real-time access advantages. There is evident switching and migration from traditional banking towards these fintech facilities, which could possibly pose a systemic risk if not properly understood and monitored. Fintech advancement has also brought about the emergence and escalation of financial technology consumption themes such as trust, security, perceived risk, and sustainability within the banking industry, themes scarcely covered in existing theoretic literature. To that end, the objective of this research is to investigate factors that determine fintech adoption and propose an integrated adoption model. This study aims to establish what the significant drivers of adoption are and develop a conceptual model that integrates technological, behavioral, and environmental constructs by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). It proposes integrating constructs that influence financial consumption themes such as trust, perceived risk, security, financial incentives, micro-investing opportunities, and environmental consciousness to determine the impact of these factors on the adoption and intention to use digital banking apps. The main advantage of this conceptual model is the consolidation of a greater number of predictor variables that can provide a fuller explanation of the consumer's adoption of digital banking Apps. Moderating variables of age, gender, and income are incorporated. To the best of author’s knowledge, this study is the first that extends the UTAUT2 model with this combination of constructs to investigate user’s intention to adopt internet-only digital banking apps in the UK context. By investigating factors that are not included in the existing theories but are highly pertinent to the adoption of internet-only banking services, this research adds to existing knowledge and extends the generalisability of the UTAUT2 in a financial services adoption context. This is something that fills a gap in knowledge, as highlighted to needing further research on UTAUT2 after reviewing the theory in 2016 from its original version of 2003. To achieve the objectives of this study, this research assumes a quantitative research approach to empirically test the hypotheses derived from existing literature and pilot studies to give statistical support to generalise the research findings for further possible applications in theory and practice. This research is explanatory or casual in nature and uses cross-section primary data collected through a survey method. Convenient and purposive sampling using structured self-administered online questionnaires is used for data collection. The proposed model is tested using Structural Equation Modelling (SEM), and the analysis of primary data collected through an online survey is processed using Smart PLS software with a sample size of 386 digital bank users. The results are expected to establish if there are significant relationships between the dependent and independent variables and establish what the most influencing factors are.Keywords: banking applications, digital banking, financial technology, technology adoption, UTAUT2
Procedia PDF Downloads 72226 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Clement Yeboah, Eva Laryea
Abstract:
A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety
Procedia PDF Downloads 77225 Analytical Validity Of A Tech Transfer Solution To Internalize Genetic Testing
Authors: Lesley Northrop, Justin DeGrazia, Jessica Greenwood
Abstract:
ASPIRA Labs now offers an en-suit and ready-to-implement technology transfer solution to enable labs and hospitals that lack the resources to build it themselves to offer in-house genetic testing. This unique platform employs a patented Molecular Inversion Probe (MIP) technology that combines the specificity of a hybrid capture protocol with the ease of an amplicon-based protocol and utilizes an advanced bioinformatics analysis pipeline based on machine learning. To demonstrate its efficacy, two independent genetic tests were validated on this technology transfer platform: expanded carrier screening (ECS) and hereditary cancer testing (HC). The analytical performance of ECS and HC was validated separately in a blinded manner for calling three different types of variants: SNVs, short indels (typically, <50 bp), and large indels/CNVs defined as multi-exonic del/dup events. The reference set was constructed using samples from Coriell Institute, an external clinical genetic testing laboratory, Maine Molecular Quality Controls Inc. (MMQCI), SeraCare and GIAB Consortium. Overall, the analytical performance showed a sensitivity and specificity of >99.4% for both ECS and HC in detecting SNVs. For indels, both tests reported specificity of 100%, and ECS demonstrated a sensitivity of 100%, whereas HC exhibited a sensitivity of 96.5%. The bioinformatics pipeline also correctly called all reference CNV events resulting in a sensitivity of 100% for both tests. No additional calls were made in the HC panel, leading to a perfect performance (specificity and F-measure of 100%). In the carrier panel, however, three additional positive calls were made outside the reference set. Two of these calls were confirmed using an orthogonal method and were re-classified as true positives leaving only one false positive. The pipeline also correctly identified all challenging carrier statuses, such as positive cases for spinal muscular atrophy and alpha-thalassemia, resulting in 100% sensitivity. After confirmation of additional positive calls via long-range PCR and MLPA, specificity for such cases was estimated at 99%. These performance metrics demonstrate that this tech-transfer solution can be confidently internalized by clinical labs and hospitals to offer mainstream ECS and HC as part of their test catalog, substantially increasing access to quality germline genetic testing for labs of all sizes and resources levels.Keywords: clinical genetics, genetic testing, molecular genetics, technology transfer
Procedia PDF Downloads 178224 Secondary Prisonization and Mental Health: A Comparative Study with Elderly Parents of Prisoners Incarcerated in Remote Jails
Authors: Luixa Reizabal, Inaki Garcia, Eneko Sansinenea, Ainize Sarrionandia, Karmele Lopez De Ipina, Elsa Fernandez
Abstract:
Although the effects of incarceration in prisons close to prisoners’ and their families’ residences have been studied, little is known about the effects of remote incarceration. The present study shows the impact of secondary prisonization on mental health of elderly parents of Basque prisoners who are incarcerated in prisons located far away from prisoners’ and their families’ residences. Secondary prisonization refers to the effects that imprisonment of a family member has on relatives. In the study, psychological effects are analyzed by means of comparative methodology. Specifically, levels of psychopathology (depression, anxiety, and stress) and positive mental health (psychological, social, and emotional well-being) are studied in a sample of parents over 65 years old of prisoners incarcerated in prisons located a long distance away (concretely, some of them in a distance of less than 400 km, while others farther than 400 km) from the Basque Country. The dataset consists of data collected through a questionnaire and from a spontaneous speech recording. The statistical and automatic analyses show that levels of psychopathology and positive mental health of elderly parents of prisoners incarcerated in remote jails are affected by the incarceration of their sons or daughters. Concretely, these parents show higher levels of depression, anxiety, and stress and lower levels of emotional (but not psychological or social) wellbeing than parents with no imprisoned daughters or sons. These findings suggest that parents with imprisoned sons or daughters suffer the impact of secondary prisonization on their mental health. When comparing parents with sons or daughters incarcerated within 400 kilometers from home and parents whose sons or daughters are incarcerated farther than 400 kilometers from home, the latter present higher levels of psychopathology, but also higher levels of positive mental health (although the difference between the two groups is not statistically significant). These findings might be explained by resilience. In fact, in traumatic situations, people can develop a force to cope with the situation, and even present a posttraumatic growth. Bearing in mind all these findings, it could be concluded that secondary prisonization implies for elderly parents with sons or daughters incarcerated in remote jails suffering and, in consequence, that changes in the penitentiary policy applied to Basque prisoners are required in order to finish this suffering.Keywords: automatic spontaneous speech analysis, elderly parents, machine learning, positive mental health, psychopathology, remote incarceration, secondary prisonization
Procedia PDF Downloads 287223 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs
Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen
Abstract:
Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement
Procedia PDF Downloads 124222 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 136221 Systematic Review of Technology-Based Mental Health Solutions for Modelling in Low and Middle Income Countries
Authors: Mukondi Esther Nethavhakone
Abstract:
In 2020 World Health Organization announced the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as Coronavirus disease 2019 (COVID-19) pandemic. To curb or contain the spread of the novel coronavirus (COVID 19), global governments implemented social distancing and lockdown regulations. Subsequently, it was no longer business as per usual, life as we knew it had changed, and so many aspects of people's lives were negatively affected, including financial and employment stability. Mainly, because companies/businesses had to put their operations on hold, some had to shut down completely, resulting in the loss of income for many people globally. Finances and employment insecurities are some of the issues that exacerbated many social issues that the world was already faced with, such as school drop-outs, teenage pregnancies, sexual assaults, gender-based violence, crime, child abuse, elderly abuse, to name a few. Expectedly the majority of the population's mental health state was threatened. This resulted in an increased number of people seeking mental healthcare services. The increasing need for mental healthcare services in Low and Middle-income countries proves to be a challenge because it is a well-known fact due to financial constraints and not well-established healthcare systems, mental healthcare provision is not as prioritised as the primary healthcare in these countries. It is against this backdrop that the researcher seeks to find viable, cost-effective, and accessible mental health solutions for low and middle-income countries amid the pressures of any pandemic. The researcher will undertake a systematic review of the technology-based mental health solutions that have been implemented/adopted by developed countries during COVID 19 lockdown and social distancing periods. This systematic review study aims to determine if low and middle-income countries can adopt the cost-effective version of digital mental health solutions for the healthcare system to adequately provide mental healthcare services during critical times such as pandemics (when there's an overwhelming diminish in mental health globally). The researcher will undertake a systematic review study through mixed methods. It will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The mixed-methods uses findings from both qualitative and quantitative studies in one review study. It will be beneficial to conduct this kind of study using mixed methods because it is a public health topic that involves social interventions and it is not purely based on medical interventions. Therefore, the meta-ethnographic (qualitative data) analysis will be crucial in understanding why and which digital methods work and for whom does it work, rather than only the meta-analysis (quantitative data) providing what digital mental health methods works. The data collection process will be extensive, involving the development of a database, table of summary of evidence/findings, and quality assessment process lastly, The researcher will ensure that ethical procedures are followed and adhered to, ensuring that sensitive data is protected and the study doesn't pose any harm to the participants.Keywords: digital, mental health, covid, low and middle-income countries
Procedia PDF Downloads 95220 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)
Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli
Abstract:
Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence
Procedia PDF Downloads 14219 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority
Authors: Vahid Asadzadeh, Amin Ataee
Abstract:
Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau and Mouffe had in mind) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media
Procedia PDF Downloads 145218 Enabling Self-Care and Shared Decision Making for People Living with Dementia
Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan
Abstract:
People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.Keywords: care goals, decision-making, dementia, self-care, sensors
Procedia PDF Downloads 169217 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 74216 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate
Authors: Anitha Kandasamy, Thirumurugan Ramaiah
Abstract:
Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation
Procedia PDF Downloads 122215 Ergonomic Assessment of Workplace Environment of Flour Mill Workers
Authors: Jayshree P. Zend, Ashatai B. Pawar
Abstract:
The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.Keywords: physiological cost, energy expenditure, musculoskeletal problems
Procedia PDF Downloads 401214 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 189