Search results for: Indian sugar manufacturing units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4979

Search results for: Indian sugar manufacturing units

659 The Pioneering Model in Teaching Arabic as a Mother Tongue through Modern Innovative Strategies

Authors: Rima Abu Jaber Bransi, Rawya Jarjoura Burbara

Abstract:

This study deals with two pioneering approaches in teaching Arabic as a mother tongue: first, computerization of literary and functional texts in the mother tongue; second, the pioneering model in teaching writing skills by computerization. The significance of the study lies in its treatment of a serious problem that is faced in the era of technology, which is the widening gap between the pupils and their mother tongue. The innovation in the study is that it introduces modern methods and tools and a pioneering instructional model that turns the process of mother tongue teaching into an effective, meaningful, interesting and motivating experience. In view of the Arabic language diglossia, standard Arabic and spoken Arabic, which constitutes a serious problem to the pupil in understanding unused words, and in order to bridge the gap between the pupils and their mother tongue, we resorted to computerized techniques; we took texts from the pre-Islamic period (Jahiliyya), starting with the Mu'allaqa of Imru' al-Qais and other selected functional texts and computerized them for teaching in an interesting way that saves time and effort, develops high thinking strategies, expands the literary good taste among the pupils, and gives the text added values that neither the book, the blackboard, the teacher nor the worksheets provide. On the other hand, we have developed a pioneering computerized model that aims to develop the pupil's ability to think, to provide his imagination with the elements of growth, invention and connection, and motivate him to be creative, and raise level of his scores and scholastic achievements. The model consists of four basic stages in teaching according to the following order: 1. The Preparatory stage, 2. The reading comprehension stage, 3. The writing stage, 4. The evaluation stage. Our lecture will introduce a detailed description of the model with illustrations and samples from the units that we built through highlighting some aspects of the uniqueness and innovation that are specific to this model and the different integrated tools and techniques that we developed. One of the most significant conclusions of this research is that teaching languages through the employment of new computerized strategies is very likely to get the Arabic speaking pupils out of the circle of passive reception into active and serious action and interaction. The study also emphasizes the argument that the computerized model of teaching can change the role of the pupil's mind from being a store of knowledge for a short time into a partner in producing knowledge and storing it in a coherent way that prevents its forgetfulness and keeping it in memory for a long period of time. Consequently, the learners also turn into partners in evaluation by expressing their views, giving their notes and observations, and application of the method of peer-teaching and learning.

Keywords: classical poetry, computerization, diglossia, writing skill

Procedia PDF Downloads 206
658 Corporate Water Footprint Assessment: The Case of Tata Steel

Authors: Sujata Mukherjee, Arunavo Mukherjee

Abstract:

Water covers 70 per cent of our planet; however, freshwater is incredibly rare, and scarce has been listed as the highest impact global risk. The problems related to freshwater scarcity multiplies with the human population having more than doubled coupled with climate change, changing water cycles leading to droughts and floods and a rise in water pollution. Businesses, governments, and local communities are constrained by water scarcity and are facing growing challenges to their growth and sustainability. Water foot printing as an indicator for water use was introduced in 2002. Business water footprint measures the total water consumed to produce the goods and services it provides. It is a combination of the water that goes into the production and manufacturing of a product or service and the water used throughout the supply chain, as well as during the use of the product. A case study approach was applied describing the efforts of Tata Steel. It is based on a series of semi-structured in-depth interviews with top executives of the company as well as observation and content analysis of internal and external documents about the company’s efforts in sustainable water management. Tata Steel draws water required for industrial use from surface water sources, primarily perennial rivers and streams, internal reservoirs and water from municipal sources. The focus of the present study was to explore Tata Steel’s engagement in sustainable water management focusing on water foot printing accounting as a tool to account for water use in the steel supply chain at its Jamshedpur plant. The findings enabled the researchers to conclude that no sources of water are adversely affected by the company’s production of steel at Jamshedpur.

Keywords: sustainability, corporate responsibility water management, risk management, business engagement

Procedia PDF Downloads 248
657 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 181
656 A Method Intensive Top-down Approach for Generating Guidelines for an Energy-Efficient Neighbourhood: A Case of Amaravati, Andhra Pradesh, India

Authors: Rituparna Pal, Faiz Ahmed

Abstract:

Neighbourhood energy efficiency is a newly emerged term to address the quality of urban strata of built environment in terms of various covariates of sustainability. The concept of sustainability paradigm in developed nations has encouraged the policymakers for developing urban scale cities to envision plans under the aegis of urban scale sustainability. The concept of neighbourhood energy efficiency is realized a lot lately just when the cities, towns and other areas comprising this massive global urban strata have started facing a strong blow from climate change, energy crisis, cost hike and an alarming shortfall in the justice which the urban areas required. So this step of urban sustainability can be easily referred more as a ‘Retrofit Action’ which is to cover up the already affected urban structure. So even if we start energy efficiency for existing cities and urban areas the initial layer remains, for which a complete model of urban sustainability still lacks definition. Urban sustainability is a broadly spoken off word with end number of parameters and policies through which the loop can be met. Out of which neighbourhood energy efficiency can be an integral part where the concept and index of neighbourhood scale indicators, block level indicators and building physics parameters can be understood, analyzed and concluded to help emerge guidelines for urban scale sustainability. The future of neighbourhood energy efficiency not only lies in energy efficiency but also important parameters like quality of life, access to green, access to daylight, outdoor comfort, natural ventilation etc. So apart from designing less energy-hungry buildings, it is required to create a built environment which will create less stress on buildings to consume more energy. A lot of literary analysis has been done in the Western countries prominently in Spain, Paris and also Hong Kong, leaving a distinct gap in the Indian scenario in exploring the sustainability at the urban strata. The site for the study has been selected in the upcoming capital city of Amaravati which can be replicated with similar neighbourhood typologies in the area. The paper suggests a methodical intent to quantify energy and sustainability indices in detail taking by involving several macro, meso and micro level covariates and parameters. Several iterations have been made both at macro and micro level and have been subjected to simulation, computation and mathematical models and finally to comparative analysis. Parameters at all levels are analyzed to suggest the best case scenarios which in turn is extrapolated to the macro level finally coming out with a proposal model for energy efficient neighbourhood and worked out guidelines with significance and correlations derived.

Keywords: energy quantification, macro scale parameters, meso scale parameters, micro scale parameters

Procedia PDF Downloads 158
655 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 110
654 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census

Authors: Jaroslav Kraus

Abstract:

Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.

Keywords: census, geo-demography, households, the Czech Republic

Procedia PDF Downloads 84
653 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India

Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy

Abstract:

Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.

Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats

Procedia PDF Downloads 250
652 Knowledge Management Processes as a Driver of Knowledge-Worker Performance in Public Health Sector of Pakistan

Authors: Shahid Razzaq

Abstract:

The governments around the globe have started taking into considerations the knowledge management dynamics while formulating, implementing, and evaluating the strategies, with or without the conscious realization, for the different public sector organizations and public policy developments. Health Department of Punjab province in Pakistan is striving to deliver quality healthcare services to the community through an efficient and effective service delivery system. Despite of this struggle some employee performance issues yet exists in the form of challenge to government. To overcome these issues department took several steps including HR strategies, use of technologies and focus of hard issues. Consequently, this study was attempted to highlight the importance of soft issue that is knowledge management in its true essence to tackle their performance issues. Knowledge management in public sector is quite an ignored area in the knowledge management-a growing multidisciplinary research discipline. Knowledge-based view of the firm theory asserts the knowledge is the most deliberate resource that can result in competitive advantage for an organization over the other competing organizations. In the context of our study it means for gaining employee performance, organizations have to increase the heterogeneous knowledge bases. The study uses the cross-sectional and quantitative research design. The data is collected from the knowledge workers of Health Department of Punjab, the biggest province of Pakistan. A total of 341 sample size is achieved. The SmartPLS 3 Version 2.6 is used for analyzing the data. The data examination revealed that knowledge management processes has a strong impact on knowledge worker performance. All hypotheses are accepted according to the results. Therefore, it can be summed up that to increase the employee performance knowledge management activities should be implemented. Health Department within province of Punjab introduces the knowledge management infrastructure and systems to make effective availability of knowledge for the service staff. This knowledge management infrastructure resulted in an increase in the knowledge management process in different remote hospitals, basic health units and care centers which resulted in greater service provisions to public. This study is to have theoretical and practical significances. In terms of theoretical contribution, this study is to establish the relationship between knowledge management and performance for the first time. In case of the practical contribution, this study is to give an insight to public sector organizations and government about role of knowledge management in employ performance. Therefore, public policymakers are strongly advised to implement the activities of knowledge management for enhancing the performance of knowledge workers. The current research validated the substantial role of knowledge management in persuading and creating employee arrogances and behavioral objectives. To the best of authors’ knowledge, this study contribute to the impact of knowledge management on employee performance as its originality.

Keywords: employee performance, knowledge management, public sector, soft issues

Procedia PDF Downloads 119
651 Domestic Violence Against Women (With Special Reference to India): A Human Rights Issue

Authors: N. B. Chandrakala

Abstract:

Domestic violence is one of the most under-reported crimes. Problem with domestic violence is that it is not even considered as abuse in many parts of the world especially certain parts of Asia, Africa and Middle East. It is viewed as “doing the needful”. Domestic violence could be in form of emotional harassment, physical injury or psychological abuse perpetrated by one of the family members to another. It is a worldwide phenomenon mainly targeting women. The acts of violence have terrible negative impact on women. It is also an infringement of women’s rights and can be safely termed as human rights abuse. In cases pertaining to domestic violence, male adults often misuses his authority and power to control another using physical or psychological means. Violence and other forms of abuse are common in domestic violence. Sexual assaults, molestation and battering are common in these cases. Domestic violence is a human rights issue and a serious deterrent to development. Domestic violence could also take place in subtle forms like making the person feel worthless or not giving the victims any personal space or freedom. The problematic aspect is cases of domestic violence are very rarely reported. The majority of the victims are women but children are also made to suffer silently. They are abused and neglected. Their innocent minds are adversely affected with the incidents of domestic violence. According to a report by World Health Organization (WHO), sexual trafficking, female feticide, dowry death, public humiliation and physical torture are some of the most common forms of domestic violence against Indian women. Such acts belie our growth and claim as an economic superpower. It is ironic that we claim to be one of the most rapidly advancing countries in the world and yet we have done hardly anything of note against social hazards like domestic violence. Laws are not that stringent when it comes to reporting acts of domestic violence. Even if the report is filed it turns out to be a long drawn process and not every victim has that much resource to fight till the end. It is also a social taboo to make your family matters public. The big challenge in front now is to enforce it in true sense. Steps that are actually needed; tough laws against domestic violence, speedy execution and change in the mindset of society only then we can expect to have some improvement in such inhuman cases. An effective response to violence must be multi-sectoral; addressing the immediate practical needs of women experiencing abuse; providing long-term follow up and assistance; and focusing on changing those cultural norms, attitudes and legal provisions that promote the acceptance of and even encourage violence against women, and undermine women's enjoyment of their full human rights and freedoms. Hence the responses to the problem must be based on integrated approach. The effectiveness of measures and initiatives will depend on coherence and coordination associated with their design and implementation.

Keywords: domestic violence, human rights, sexual assaults, World Health Organization

Procedia PDF Downloads 524
650 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 143
649 Distribution and Diversity of Pyrenocarpous Lichens in India with Special Reference to Forest Health

Authors: Gaurav Kumar Mishra, Sanjeeva Nayaka, Dalip Kumar Upreti

Abstract:

Our nature exhibited presence of a number of unique plants which can be used as indicator of environmental condition of particular place. Lichens are unique plant which has an ability to absorb not only organic, inorganic and metaloties but also absorb radioactive nuclide substances present in the environment. In the present study pyrenocarpous lichens will used as indicator of good forest health in a particular place. The Pyrenocarpous lichens are simple crust forming with black dot like perithecia have few characters for their taxonomical segregation as compared to their foliose and fruticose brethrean. The thallus colour and nature, presence and absence of hypothallus are only few characters of thallus are used to segregate the pyrenocarpous taxa. The fruiting bodies of pyrenolichens i.e. ascocarps are perithecia. The perithecia and the contents found within them posses many important criteria for the segregation of pyrenocarpous lichen taxa. The ascocarp morphology, ascocarp arrangement, the perithecial wall, ascocarp shape and colour, ostiole shape and position, ostiole colour, ascocarp anatomy including type of paraphyses, asci shape and size, ascospores septation, ascospores wall and periphyses are the valuable charcters used for segregation of different pyrenocarpous lichen taxa. India is represented by the occurrence of the 350 species of 44 genera and eleven families. Among the different genera Pyrenula is dominant with 82 species followed by the Porina with 70 species. Recently, systematic of the pyrenocarpous lichens have been revised by American and European lichenologists using phylogenetic methods. Still the taxonomy of pyrenocarpous lichens is in flux and information generated after the completion of this study will play vital role in settlement of the taxonomy of this peculiar group of lichens worldwide. The Indian Himalayan region exhibit rich diversity of pyrenocarpous lichens in India. The western Himalayan region has luxuriance of pyrenocarpous lichens due to its unique topography and climate condition. However, the eastern Himalayan region has rich diversity of pyrenocarpous lichens due to its warmer and moist climate condition. The rich moist and warmer climate in eastern Himalayan region supports forest with dominance of evergreen tree vegetation. The pyrenocarpous lichens communities are good indicator of young and regenerated forest type. The rich diversity of lichens clearly indicates that moist of the forest within the eastern Himalayan region has good health of forest. Due to fast pace of urbanization and other developmental activities will defiantly have adverse effects on the diversity and distribution of pyrenocarpous lichens in different forest type and the present distribution pattern will act as baseline data for carried out future biomonitoring studies in the area.

Keywords: lichen diversity, indicator species, environmental factors, pyrenocarpous

Procedia PDF Downloads 127
648 Open Space Use in University Campuses with User Requirements Analysis: The Case of Eskişehir Osmangazi University Meşelik Campus

Authors: Aysen Celen Ozturk, Hatice Dulger

Abstract:

University may be defined as a teaching institution consisting of faculties, institutes, colleges, and units that have undergraduate and graduate education, scientific research and publications. It has scientific autonomy and public legal personality. Today, universities are not only the institutions in which students and lecturers experience education, training and scientific work. They also offer social, cultural and artistic activities that strengthen the link with the city. This also incorporates all city users into the campus borders. Thus, universities contribute to social and individual development of the country by providing science, art, socio-cultural development, communication and socialization with people of different cultural and social backgrounds. Moreover, universities provide an active social life, where the young population is the majority. This enables the sense of belonging to the users to develop, to increase the interaction between academicians and students, and to increase the learning / producing community by continuing academic sharing environments outside the classrooms. For this reason, besides academic spaces in university campuses, the users also need closed and open spaces where they can socialize, spend time together and relax. Public open spaces are the most important social spaces that individuals meet, express themselves and share. Individuals belonging to different socio-cultural structures and ethnic groups maintain their social experiences with the physical environment they are in, the outdoors, and their actions and sharing in these spaces. While university campuses are being designed for their individual and social development roles, user needs must be determined correctly and design should be realized in this direction. While considering that requirements may change over time, user satisfaction should be questioned at certain periods and new arrangements should be made in existing applications in the direction of current demands. This study aims to determine the user requirements through the case of Eskişehir Osmangazi University, Meşelik Campus / Turkey. Post Occupancy Evaluation (POE) questionnaire, cognitive mapping and deep interview methods are used in the research process. All these methods show that the students, academicians and other officials in the Meşelik Campus of Eskişehir Osmangazi University find way finding elements insufficient and are in need of efficient landscape design and social spaces. This study is important in terms of determining the needs of the users as a design input. This will help improving the quality of common space in Eskişehir Osmangazi University and in other similar universities.

Keywords: university campuses, public open space, user requirement, post occupancy evaluation

Procedia PDF Downloads 225
647 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting

Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini

Abstract:

Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.

Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys

Procedia PDF Downloads 83
646 The Prevalence and Profile of Extended Spectrum B-Lactamase (ESBL) Producing Enterobacteriaceae Species in the Intensive Care Unit (ICU) Setting of a Tertiary Care Hospital of North India

Authors: Harmeet Pal Singh Dhooria, Deepinder Chinna, UPS Sidhu, Alok Jain

Abstract:

Serious infections caused by gram-negative bacteria are a significant cause of mortality and morbidity in the hospital setting. In acute care facilities like in intensive care units (ICUs), the intensity of antimicrobial use together with a population highly susceptible to infection, creates an environment, which facilitates both emergence and transmission of Extended Spectrum -lactamase (ESBL) producing Enterobacteriaceae species. The study was conducted in the Medical Intensive Care Unit (MICU) and the Pulmonary Critical Care Unit (PCCU) of the Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India. Out of a total of 1108 samples of urine, blood and respiratory tract secretions received for culture and sensitivity analysis from Medical Intensive Care Unit and Pulmonary Critical Care Unit, a total of 170 isolates of Enterobacteriaceae species were obtained which were then included in our study. Out of these 170 isolates, confirmed ESBL production was seen in 116 (68.24%) cases. E.coli was the most common species isolated (56.47%) followed by Klebsiella (32.94%), Enterobacter (5.88%), Citrobacter (3.53%), Enterobacter (0.59%) and Morganella (0.59%) among the total isolates. The rate of ESBL production was more in Klebsiella (78.57%) as compared to E.coli (60.42%). ESBL producers were found to be significantly more common in patients with prior history of hospitalization, antibiotic use, and prolonged ICU stay. Also significantly increased the prevalence of ESBL related infections was observed in patients with a history of catheterization or central line insertion but not in patients with the history of intubation. Patients who had an underlying malignancy had significantly higher prevalence of ESBL related infections as compared to other co-morbid illnesses. A slightly significant difference in the rate of mortality/LAMA was observed in the ESBL producer versus the non-ESBL producer group. The rate of mortality/LAMA was significantly higher in the ESBL related UTI but not in the ESBL related respiratory tract and bloodstream infections. ESBL producing isolates had significantly higher rates of resistance to Cefepime and Piperacillin/Tazobactum, and to non β-lactum antibiotics like Amikacin and Ciprofloxacin. The level of resistance to Imipenem was lower as compared to other antibiotics. However, it was noted that ESBL producing isolates had higher levels of resistance to Imipenem as compared to non-ESBL producing isolates. Conclusion- The prevalence of ESBL producing organisms was found to be very high (68.24%) among Enterobacteriaceae isolates in our ICU setting as among other ICU care settings around the world.

Keywords: enterobacteriaceae, extended spectrum B-lactamase (ESBL), ICU, antibiotic resistance

Procedia PDF Downloads 248
645 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 198
644 The Importance of SEEQ in Teaching Evaluation of Undergraduate Engineering Education in India

Authors: Aabha Chaubey, Bani Bhattacharya

Abstract:

Evaluation of the quality of teaching in engineering education in India needs to be conducted on a continuous basis to achieve the best teaching quality in technical education. Quality teaching is an influential factor in technical education which impacts largely on learning outcomes of the students. Present study is not exclusively theory-driven, but it draws on various specific concepts and constructs in the domain of technical education. These include teaching and learning in higher education, teacher effectiveness, and teacher evaluation and performance management in higher education. Student Evaluation of Education Quality (SEEQ) was proposed as one of the evaluation instruments of the quality teaching in engineering education. SEEQ is one of the popular and standard instrument widely utilized all over the world and bears the validity and reliability in educational world. The present study was designed to evaluate the teaching quality through SEEQ in the context of technical education in India, including its validity and reliability based on the collected data. The multiple dimensionality of SEEQ that is present in every teaching and learning process made it quite suitable to collect the feedback of students regarding the quality of instructions and instructor. The SEEQ comprises of 9 original constructs i.e.; learning value, teacher enthusiasm, organization, group interaction, and individual rapport, breadth of coverage, assessment, assignments and overall rating of particular course and instructor with total of 33 items. In the present study, a total of 350 samples comprising first year undergraduate students from Indian Institute of Technology, Kharagpur (IIT, Kharagpur, India) were included for the evaluation of the importance of SEEQ. They belonged to four different courses of different streams of engineering studies. The above studies depicted the validity and reliability of SEEQ was based upon the collected data. This further needs Confirmatory Factor Analysis (CFA) and Analysis of Moment structure (AMOS) for various scaled instrument like SEEQ Cronbach’s alpha which are associated with SPSS for the examination of the internal consistency. The evaluation of the effectiveness of SEEQ in CFA is implemented on the basis of fit indices such as CMIN/df, CFI, GFI, AGFI and RMSEA readings. The major findings of this study showed the fitness indices such as ChiSq = 993.664,df = 390,ChiSq/df = 2.548,GFI = 0.782,AGFI = 0.736,CFI = 0.848,RMSEA = 0.062,TLI = 0.945,RMR = 0.029,PCLOSE = 0.006. The final analysis of the fit indices presented positive construct validity and stability, on the other hand a higher reliability was also depicted which indicated towards internal consistency. Thus, the study suggests the effectivity of SEEQ as the indicator of the quality evaluation instrument in teaching-learning process in engineering education in India. Therefore, it is expected that with the continuation of this research in engineering education there remains a possibility towards the betterment of the quality of the technical education in India. It is also expected that this study will provide an empirical and theoretical logic towards locating a construct or factor related to teaching, which has the greatest impact on teaching and learning process in a particular course or stream in engineering education.

Keywords: confirmatory factor analysis, engineering education, SEEQ, teaching and learning process

Procedia PDF Downloads 401
643 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country

Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni

Abstract:

Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.

Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country

Procedia PDF Downloads 46
642 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 520
641 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 107
640 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 120
639 Thermal Proprieties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 272
638 Benefits of Automobile Electronic Technology in the Logistics Industry in Third World Countries

Authors: Jonathan Matyenyika

Abstract:

In recent years, automobile manufacturers have increasingly produced vehicles equipped with cutting-edge automotive electronic technology to match the fast-paced digital world of today; this has brought about various benefits in different business sectors that make use of these vehicles as a means of turning over a profit. In the logistics industry, vehicles equipped with this technology have proved to be very utilitarian; this paper focuses on the benefits automobile electronic equipped vehicles have in the logistics industry. Automotive vehicle manufacturers have introduced new technological electronic features to their vehicles to enhance and improve the overall performance, efficiency, safety and driver comfort. Some of these features have proved to be beneficial to logistics operators. To start with the introduction of adaptive cruise control in long-distance haulage vehicles, to see how this system benefits the drivers, we carried out research in the form of interviews with long-distance truck drivers with the main question being, what major difference have they experienced since they started to operate vehicles equipped with this technology to which most stated they had noticed that they are less tired and are able to drive longer distances as compared to when they used vehicles not equipped with this system. As a result, they can deliver faster and take on the next assignment, thus improving efficiency and bringing in more monetary return for the logistics company. Secondly, the introduction of electric hybrid technology, this system allows the vehicle to be propelled by electric power stored in batteries located in the vehicle instead of fossil fuel. Consequently, this benefits the logistic company as vehicles become cheaper to run as electricity is more affordable as compared to fossil fuel. The merging of electronic systems in vehicles has proved to be of great benefit, as my research proves that this can benefit the logistics industry in plenty of ways.

Keywords: logistics, manufacturing, hybrid technology, haulage vehicles

Procedia PDF Downloads 31
637 Stress, Anxiety and Its Associated Factors Within the Transgender Population of Delhi: A Cross-Sectional Study

Authors: Annie Singh, Ishaan Singh

Abstract:

Background: Transgenders are people who have a gender identity different from their sex assigned at birth. Their gender behaviour doesn’t match their body anatomy. The community faces discrimination due to their gender identity all across the world. The term transgender is an umbrella term for many people non-conformal to their biological identity; note that the term transgender is different from gender dysphoria, which is a DSM-5 disorder defined as problems faced by an individual due to their non-conforming gender identity. Transgender people have been a part of Indian culture for ages yet have continued to face exclusion and discrimination in society. This has led to the low socio-economic status of the community. Various studies done across the world have established the role of discrimination, harassment and exclusion in the development of psychological disorders. The study is aimed to assess the frequency of stress and anxiety in the transgender population and understand the various factors affecting the same. Methodology: A cross-sectional survey of self consenting transgender individuals above the age of 18 residing in Delhi was done to assess their socioeconomic status and experiential ecology. Recruitment of participants was done with the help of NGOs. The survey was constructed GAD-7 and PSS-10, two well-known scales were used to assess the stress and anxiety levels. Medians, means and ranges are used for reporting continuous data wherever required, while frequencies and percentages are used for categorical data. For associations and comparison between groups in categorical data, the Chi-square test was used, while the Kruskal-Wallis H test was employed for associations involving multiple ordinal groups. SPSS v28.0 was used to perform the statistical analysis for this study. Results: The survey showed that the frequency of stress and anxiety is high in the transgender population. A demographic survey indicates a low socio-economic background. 44% of participants reported facing discrimination on a daily basis; the frequency of discrimination is higher in transwomen than in transmen. Stress and anxiety levels are similar among both transmen and transwomen. Only 34.5% of participants said they had receptive family or friends. The majority of participants (72.7%) reported a positive or neutral experience with healthcare workers. The prevalence of discrimination is significantly lower in the higher educated groups. Analysis of data shows a positive impact of acceptance and reception on mental health, while discrimination is correlated with higher levels of stress and anxiety. Conclusion: The prevalence of widespread transphobia and discrimination faced by the transgender community has culminated in high levels of stress and anxiety in the transgender population and shows variance according to multiple socio-demographic factors. Educating people about the LGBT community formation of support groups, policies and laws are required to establish trust and promote integration.

Keywords: transgender, gender, stress, anxiety, mental health, discrimination, exclusion

Procedia PDF Downloads 94
636 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 354
635 Sattriya: Its Transformation as a Principal Medium of Preaching Vaishnava Religion to Performing Art

Authors: Smita Lahkar

Abstract:

Sattriya, the youngest of the eight principal Classical Indian dance traditions, has undergone too many changes and modifications to arrive at its present stage of performing art form extracting itself from age-old religious confinement. Although some of the other traditions have been revived in the recent past, Sattriya has a living tradition since its inception in the 15th century by Srimanta Sankardeva, the great Vaishnavite saint, poet, playwright, lyricist, painter, singer and dancer of Assam, a primary north-eastern state of India. This living dance tradition from the Sattras, the Vaishnavite monasteries, has been practiced for over five hundred years by celibate male monks, as a powerful medium for propagating the Vaishnava religious faith. Sankardeva realised the potential of the vocalised word integrated with the visual image as a powerful medium of expression and communication. So he used this principal medium for propagating his newly found message of devotion among the people of his time. Earlier, Sattriya was performed by male monks alone in monasteries (Sattras) as a part of daily rituals. The females were not even allowed to learn this art form. But, in present time, Sattriya has come out from the Sattras to proscenium stage, performed mostly by female as well as few male dancers also. The technique of performing movements, costumes, ornaments, music and style of performance too have experienced too many changes and modifications. For example, earlier and even today in Sattra, the ‘Pataka’ hand gesture is depicted in conformity with the original context (religious) of creation of the dance form. But, today stage-performers prefer the instructions of the scripture ‘Srihastamuktavali’ and depict the ‘Pataka’ in a sophisticated manner affecting decontextualisation to a certain extent. This adds aesthetic beauty to the dance form as an art distancing it from its context of being a vehicle for propagating Vaishnava religion. The Sattriya dance today stands at the crossroads of past and future, tradition and modernity, devotion and display, spirituality and secularism. The traditional exponents trained under the tutelage of Sattra maestros and imbibing a devotionally inspired rigour of the religion, try to retain the traditional nuances; while the young artists being trained outside the monasteries are more interested in taking up the discipline purely from the perspective of ‘performing arts’ bereft of the philosophy of religion or its sacred associations. Hence, this paper will be an endeavor to establish the hypothesis that the Sattriya, whose origin was for propagating Vaishnava faith, has now entered the world of performing arts with highly aesthetical components. And as a transformed art form, Sattriya may be expected to carve a niche in world dance arena. This will be done with the help of historical evidences, observations from the recorded past and expert rendezvous.

Keywords: dance, performing art, religion, Sattriya

Procedia PDF Downloads 197
634 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 179
633 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India

Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari

Abstract:

The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.

Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya

Procedia PDF Downloads 46
632 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout

Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini

Abstract:

The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation

Procedia PDF Downloads 107
631 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna

Authors: Kholod Khairy Salama, Shabban Hassan Thabet

Abstract:

In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.

Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR

Procedia PDF Downloads 57
630 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 220