Search results for: monitoring networks
1428 Requirements to Establish a Taxi Sharing System in an Urban Area
Authors: Morteza Ahmadpur, Ilgin Gokasar, Saman Ghaffarian
Abstract:
That Transportation system plays an important role in management of societies is an undeniable fact and it is one of the most challenging issues in human beings routine life. But by increasing the population in urban areas, the demand for transportation modes also increase. Accordingly, it is obvious that more flexible and dynamic transportation system is required to satisfy peoples’ requirements. Nowadays, there is significant increase in number of environmental issues all over the world which is because of human activities. New technological achievements bring new horizons for humans and so they changed the life style of humans in every aspect of their life and transportation is not an exception. By using new technology, societies can modernize their transportation system and increase the feasibility of their system. Real–time Taxi sharing systems is one of the novel and most modern systems all over the world. For establishing this kind of system in an urban area it is required to use the most advanced technologies in a transportation system. GPS navigation devices, computers and social networks are just some parts of this kind of system. Like carpooling, real-time taxi sharing is one of the best ways to better utilize the empty seats in most cars and taxis, thus decreasing energy consumption and transport costs. It can serve areas not covered by a public transit system and act as a transit feeder service. Taxi sharing is also capable of serving one-time trips, not only recurrent commute trips or scheduled trips. In this study, we describe the requirements and parameters that we need to establish a useful real-time ride sharing system for an urban area. The parameters and requirements of this study can be used in any urban area.Keywords: transportation, intelligent transportation systems, ride-sharing, taxi sharing
Procedia PDF Downloads 4271427 Digital Customer Relationship Management on Service Delivery Performance
Authors: Reuben Kinyuru Njuguna, Martin Mabuya Njuguna
Abstract:
Digital platforms, such as The Internet, and the advent of digital marketing strategies, have led to many changes in the marketing of goods and services. These have resulted in improved service quality, enhanced customer relations, productivity gains, marketing transaction cost reductions, improved customer service and flexibility in fulfilling customers’ changing needs and lifestyles. Consequently, the purpose of this study was to determine the effect of digital marketing practices on the financial performance of mobile network operators in the telecommunications industry in Kenya. The objectives of the study were to establish how digital customer relationship management strategies on performance of mobile network operators in Kenya. The study used an explanatory cross-sectional survey research design, while the target population was made up of from the 4 major mobile network operators in Kenya, namely Safaricom Limited, Airtel Networks Kenya Limited, Finserve Africa Limited and Telkom Kenya Limited. Sampling strategy was stratified sampling with a sample size of 97 respondents. Digital customer relationship strategies were seen to influence firm performance, through enhancing convenience, building trust, encouraging growth in market share through creating sustainable relationships, building commitment with customers, enhancing customer retention and customer satisfaction. Digital customer relationship management were seen to maximize gross profits by increasing customer satisfaction, loyalty and retention. The study recommended upscaling the use of digital customer relationship management strategies to further enhance firm performance, given their great potential in this regard.Keywords: customer relationship management, customer service delivery, performance, customer satisfaction
Procedia PDF Downloads 2381426 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria
Authors: A. Yakub AbdurRaheem
Abstract:
Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the northeastern parts have ignited violence, bloodshed, refugee exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, but it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of this social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for the prompt response, encourage community and neighborhood policing to ameliorate security challenges in Nigeria.Keywords: social crisis, economy, resources, property market
Procedia PDF Downloads 2371425 Ireland to US Food Tourism the Diaspora and the Locale
Authors: Catriona Hilliard
Abstract:
Food identity is synonymous with many national tourism destinations and perceptions in tourist source markets – stereotypes could include snails in France; beer in Britain and Germany; paella in Spain - and is an accepted element of national identity that can be incorporated into tourism experiences. Irish transatlantic food connections are culturally strong with diaspora subsequent generations in the US displaying an online interest in traditional Irish food, even with a twist. Back ‘home’, the value of the local indigenous experience was a specific element of the way The Gathering 2013 was promoted to the Irish diaspora, developing community interest and input to tourism. Over the past 20 years, Ireland has realized the value of its food industry to tourism. This has included the establishment of food development programmes for the hospitality industry; food festivals as a possible element of the tourist experience; and a programmes of food ambassadors to market Irish produce and to encourage service providers to understand; utilize and incorporate this into their offerings. Irish produce is being now actively marketed as part of the proposed tourism experience, to particular segment markets including transatlantic visitors. In addition, individual providers are becoming aware of the value of the market, and how to gain from it. Also, networks of food providers have developed collaborative structures of promoting their experiences to audiences, displaying a cluster approach of tourism development towards that sector. A power point presentation will look at how Irish produce contributes to tourism marketing and promotion of Ireland to America; how that may have assisted sustainable development of communities here; and hopes to elicit some discussion relating to longer term identification of Irish food, as part of tourism, for the potential benefit of the ‘locale’.Keywords: Irish, USA, food, tourism
Procedia PDF Downloads 3891424 Permeable Bio-Reactive Barriers to Tackle Petroleum Hydrocarbon Contamination in the Sub-Antarctic
Authors: Benjamin L. Freidman, Sally L. Gras, Ian Snape, Geoff W. Stevens, Kathryn A. Mumford
Abstract:
Increasing transportation and storage of petroleum hydrocarbons in Antarctic and sub-Antarctic regions have resulted in frequent accidental spills. Migrating petroleum hydrocarbon spills can have a significant impact on terrestrial and marine ecosystems in cold regions, as harsh environmental conditions result in heightened sensitivity to pollution. This migration of contaminants has led to the development of Permeable Reactive Barriers (PRB) for application in cold regions. PRB’s are one of the most practical technologies for on-site or in-situ groundwater remediation in cold regions due to their minimal energy, monitoring and maintenance requirements. The Main Power House site has been used as a fuel storage and power generation area for the Macquarie Island research station since at least 1960. Soil analysis at the site has revealed Total Petroleum Hydrocarbon (TPH) (C9-C28) concentrations as high as 19,000 mg/kg soil. Groundwater TPH concentrations at this site can exceed 350 mg/L TPH. Ongoing migration of petroleum hydrocarbons into the neighbouring marine ecosystem resulted in the installation of a ‘funnel and gate’ PRB in November 2014. The ‘funnel and gate’ design successfully intercepted contaminated groundwater and analysis of TPH retention and biodegradation on PRB media are currently underway. Installation of the PRB facilitates research aimed at better understanding the contribution of particle attached biofilms to the remediation of groundwater systems. Bench-scale PRB system analysis at The University of Melbourne is currently examining the role biofilms play in petroleum hydrocarbon degradation, and how controlled release nutrient media can heighten the metabolic activity of biofilms in cold regions in the presence of low temperatures and low nutrient groundwater.Keywords: groundwater, petroleum, Macquarie island, funnel and gate
Procedia PDF Downloads 3581423 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company
Authors: Lokendra Kumar Devangan, Ajay Mishra
Abstract:
This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.Keywords: production planning, mixed integer optimization, network model, network optimization
Procedia PDF Downloads 671422 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture
Authors: Chun-Qing Li, Guoyang Fu, Wei Yang
Abstract:
A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity
Procedia PDF Downloads 3211421 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 751420 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 1361419 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo
Abstract:
Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution
Procedia PDF Downloads 1791418 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band
Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov
Abstract:
This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization
Procedia PDF Downloads 1571417 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 1081416 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1381415 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 1801414 Genetic Assessment of The Managed Gharial Population In The Girwa River, India
Authors: Surya Prasad Sharma, Suyash Katdare, Syed Ainul Hussain
Abstract:
Human-induced factors contributed to the population decline of crocodylians in India which became evident by the mid-20th century when authorities forewarned the extinction risk for the crocodile and proposed regulation in the crocodile trade. The proposed action led to the enactment of national and international wildlife regulations to prohibit the trade-in of crocodile skins and parts. Subsequently, conservation translocation programs were initiated to restore the species in the wild through a 'head-start' approach. In India, the crocodile conservation program, which began in the early 1970s, has been one of India's longest-running conservation initiatives. The gharial (Gavialis gangeticus) population has benefitted, and the gharial number increased rapidly owing to these efforts. The immediate risk of extinction was averted as the gharial has recovered due to decades-long cumulative conservation efforts, the consideration of the genetic for monitoring the recovery of the recovered populations is still lacking. Hence, we assessed the genetic diversity of the Girwa gharial population in India using six polymorphic nuclear microsatellites loci and mitochondrial control region. The number of alleles per loci ranged between 2 to 5, and the allelic richness (Ar) was 2.67 ± 0.49, and the observed (Ho) and expected (He) heterozygosities were 0.42 ± 0.08 and 0.42 ± 0.09, respectively. The M-ratio yielded a value of (0.41 ± 0.16) lower than critical M, suggesting a genetic bottleneck in the Girwa population. We observed more mitochondrial control region haplotypes in the Girwa population than previously reported in the largest gharial population in the Chambal River. Overall, our study indicates that genetic diversity remains low despite the recovery in the Girwa population. Hence, we recommend a range-wide genetic assessment of gharial populations using high-throughput techniques to identify the source population and plan future translocation programs.Keywords: conservation translocation, recovery, crocodile, bottleneck
Procedia PDF Downloads 1101413 Trend and Incidence of Tuberculosis, Yemen, 2019 to 2021
Authors: Zainab A. Alaghbri, Labiba A., Esam A.
Abstract:
Tuberculosis (TB) is the fourth leading cause of death in Yemen and is considered a major priority by the Ministry of Public Health. The war in Yemen has led to the emergence of one of the worst humanitarian crises in the world. These circumstances may lead to exacerbate the situation of tuberculosis. This study aims to describe the trend and incidence of TB in north and east governorates, Yemen 2019-2021 and provide recommendations for interventions. A descriptive analysis was conducted during July to September 2022. Data of TB cases were obtained from the national tuberculosis program as soft copy. The Data included the TB case collected and diagnosed during 2019-2021. The data contains the following variables: Sex, age, governorates, smear-positive cases, extra-pulmonary cases, and treatment outcomes. 16791 TB cases were notified for an overall case notification rate 65.5/100000 for all forms (smear positive and Extra-pulmonary), There was a slightly declined in 2020 and 2021 by 1%. Both the pulmonary smear positive and Extra pulmonary rates were slightly decreased from 8.8 to 7.7 and 13.5 to 12.8 / 100, 000 populations respectively. For Tuberculosis cases by type of patient, the incidence of extra-pulmonary was the highest (12,9, 11.3 and 12,2/100000) over the three years. However, the incidence of pulmonary failure was the lowest. The majority of cases were in the age group 25-34. The overall treatment success rate for smear-positive patients was 88%. Of the 627 patients with documented unsuccessful outcomes (e.g., failure, death, and default), 165 (23%) died, 52 (8.3%) failed treatment, and 410 (65%) defaulted. Overall, the magnitude of tuberculosis decreased over the periods reviewed. The proportion of Extra-pulmonary TB was the highest. The success rate achieved after treatment was below the levels established by the WHO End Tuberculosis Strategy (90%). Failure to complete treatment may be responsible for the low success rate. Monitoring and addressing the risk factors that were associated with treatment outcomes and duration may help improve the likelihood of achieving favorable outcomes among cases of smear-positive pulmonary TB.Keywords: tuberculosis, trend, incidence, yemen
Procedia PDF Downloads 971412 Long-Range Transport of Biomass Burning Aerosols over South America: A Case Study in the 2019 Amazon Rainforest Wildfires Season
Authors: Angel Liduvino Vara-Vela, Dirceu Luis Herdies, Debora Souza Alvim, Eder Paulo Vendrasco, Silvio Nilo Figueroa, Jayant Pendharkar, Julio Pablo Reyes Fernandez
Abstract:
Biomass-burning episodes are quite common in the central Amazon rainforest and represent a dominant source of aerosols during the dry season, between August and October. The increase in the occurrence of fires in 2019 in the world’s largest biomes has captured the attention of the international community. In particular, a rare and extreme smoke-related event occurred in the afternoon of Monday, August 19, 2019, in the most populous city in the Western Hemisphere, the São Paulo Metropolitan Area (SPMA), located in southeastern Brazil. The sky over the SPMA suddenly blackened, with the day turning into night, as reported by several news media around the world. In order to clarify whether or not the smoke that plunged the SPMA into sudden darkness was related to wildfires in the Amazon rainforest region, a set of 48-hour simulations over South America were performed using the Weather Research and Forecasting with Chemistry (WRF-Chem) model at 20 km horizontal resolution, on a daily basis, during the period from August 16 to August 19, 2019. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. Although a very strong smoke transport coming from the Amazon rainforest was observed in the middle of the afternoon on August 19, its impact on air quality over the SPMA took place in upper levels far above the surface, where, conversely, low air pollutant concentrations were observed.Keywords: Amazon rainforest, biomass burning aerosols, São Paulo metropolitan area, WRF-Chem model
Procedia PDF Downloads 1391411 Biospiral-Detect to Distinguish PrP Multimers from Monomers
Authors: Gulyas Erzsebet
Abstract:
The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.Keywords: diagnosis, ELISA, Prion, TSE
Procedia PDF Downloads 2511410 Monitoring Soil Organic Amendments Under Arid Climate: Evolution of Soil Quality and of Two Consecutive Barley Crops
Authors: Houda Oueriemmi, Petra Susan Kidd, Carmen Trasar-Cepeda, Beatriz Rodríguez-Garrido, Mohamed Moussa, Ángeles Prieto-Fernández, Mohamed Ouessar
Abstract:
Organic amendments are generally used for improving the fertility of arid and semi-arid soils. However, the price of farmyard manure, the organic amendment typically applied to many arid and semi-arid soils has highly increased in the last years. To investigate at field scale whether cheap, highly available organic amendments, such as sewage sludge compost and municipal solid waste compost, may be acceptable as substitutes for farmyard manure is therefore of great interest. A field plots experiment was carried out to assess the effects of a single application of three organic amendments on soil fertility, distribution of trace elements and on barley yield. Municipal solid waste compost (MSWC), farmyard manure (FYM) and sewage sludge compost (SSC) were applied at rates of 0, 20, 40 and 60 t ha⁻¹, and barley was cultivated in two consecutive years. Plant samples and soils were collected for laboratory analyses after two consecutive harvests. Compared with unamended soil, the application of the three organic residues improved the fertility of the topsoil, showing a significant dose-dependent increase of TOC, N, P contents up to the highest dose of 60 t ha⁻¹ (0.74%, 0.06% and 40 mg kg⁻¹, respectively). The enhancement of soil nutrient status impacted positively on grain yield (up to 51%). The distribution of trace elements in the soil, analysed by a sequential extraction procedure, revealed that the MSWC increased the acid-extractable Co and Cu and reducible Ni, while SSC increased reducible Co and Ni and oxidisable Cu, relative to the control soil.Keywords: municipal solid waste compost, sewage sludge compost, fertility, trace metals
Procedia PDF Downloads 881409 Spectral Mixture Model Applied to Cannabis Parcel Determination
Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara
Abstract:
Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels
Procedia PDF Downloads 1971408 Spatio-Temporal Analysis of Rabies Incidence in Herbivores of Economic Interest in Brazil
Authors: Francisco Miroslav Ulloa-Stanojlovic, Gina Polo, Ricardo Augusto Dias
Abstract:
In Brazil, there is a high incidence of rabies in herbivores of economic interest (HEI) transmitted by the common vampire bat Desmodus rotundus, the presence of human rabies cases and the huge economic losses in the world's largest cattle industry, it is important to assist the National Program for Control of Rabies in herbivores in Brazil, that aims to reduce the incidence of rabies in HEI populations, mainly through epidemiological surveillance, vaccination of herbivores and control of vampire-bat roosts. Material and Methods: A spatiotemporal retrospective Kulldorff's spatial scan statistic based on a Poisson model and Monte Carlo simulation and an Anselin's Local Moran's I statistic were used to uncover spatial clustering of HEI rabies from 2000 – 2014. Results: Were identify three important clusters with significant year-to-year variation (Figure 1). In 2000, was identified one area of clustering in the North region, specifically in the State of Tocantins. Between the year 2000 and 2004, a cluster centered in the Midwest and Southeast region including the States of Goiás, Minas Gerais, Rio de Janeiro, Espirito Santo and São Paulo was prominent. And finally between 2000 and 2005 was found an important cluster in the North, Midwest and South region. Conclusions: The HEI rabies is endemic in the country, in addition, appears to be significant differences among the States according to their surveillance services, that may be difficulting the control of the disease, also other factors could be influencing in the maintenance of this problem like the lack of information of vampire-bat roosts identification, and limited human resources for realization of field monitoring. A review of the program control by the authorities it’s necessary.Keywords: Brazil, Desmodus rotundus, herbivores, rabies
Procedia PDF Downloads 4181407 Sharing Tacit Knowledge: The Essence of Knowledge Management
Authors: Ayesha Khatun
Abstract:
In 21st century where markets are unstable, technologies rapidly proliferate, competitors multiply, products and services become obsolete almost overnight and customers demand low cost high value product, leveraging and harnessing knowledge is not just a potential source of competitive advantage rather a necessity in technology based and information intensive industries. Knowledge management focuses on leveraging the available knowledge and sharing the same among the individuals in the organization so that the employees can make best use of it towards achieving the organizational goals. Knowledge is not a discrete object. It is embedded in people and so difficult to transfer outside the immediate context that it becomes a major competitive advantage. However, internal transfer of knowledge among the employees is essential to maximize the use of knowledge available in the organization in an unstructured manner. But as knowledge is the source of competitive advantage for the organization it is also the source of competitive advantage for the individuals. People think that knowledge is power and sharing the same may lead to lose the competitive position. Moreover, the very nature of tacit knowledge poses many difficulties in sharing the same. But sharing tacit knowledge is the vital part of knowledge management process because it is the tacit knowledge which is inimitable. Knowledge management has been made synonymous with the use of software and technology leading to the management of explicit knowledge only ignoring personal interaction and forming of informal networks which are considered as the most successful means of sharing tacit knowledge. Factors responsible for effective sharing of tacit knowledge are grouped into –individual, organizational and technological factors. Different factors under each category have been identified. Creating a positive organizational culture, encouraging personal interaction, practicing reward system are some of the strategies that can help to overcome many of the barriers to effective sharing of tacit knowledge. Methodology applied here is completely secondary. Extensive review of relevant literature has been undertaken for the purpose.Keywords: knowledge, tacit knowledge, knowledge management, sustainable competitive advantage, organization, knowledge sharing
Procedia PDF Downloads 3981406 Comparative Evaluation of the Effectiveness of Different Mindfulness-Based Interventions on Medically Unexplained Symptoms: A Systematic Review
Authors: R. R. Billones, N. Lukkahatai, L. N. Saligan
Abstract:
Mindfulness based interventions (MBIs) have been used in medically unexplained symptoms (MUS). This systematic review describes the literature investigating the general effect of MBIs on MUS and identifies the effects of specific MBIs on specific MUS conditions. The preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA) and the modified Oxford quality scoring system (JADAD) were applied to the review, yielding an initial 1,556 articles. The search engines included PubMed, ScienceDirect, Web of Science, Scopus, EMBASE, and PsychINFO using the search terms: mindfulness, or mediations, or mindful or MBCT or MBSR and medically unexplained symptoms or MUS or fibromyalgia or FMS. A total of 24 articles were included in the final systematic review. MBIs showed large effects on socialization skills for chronic fatigue syndrome (d=0.65), anger in fibromyalgia (d=0.61), improvement of somatic symptoms (d=1.6) and sleep (d=1.12) for painful conditions, physical health for chronic back pain (d=0.51), and disease intensity for irritable bowel disease/syndrome (d=1.13). A manualized MBI that applies the four fundamental elements present in all types of interventions were critical to efficacy. These elements were psycho-education sessions specific to better understand the medical symptoms, the practice of awareness, the non-judgmental observance of the experience at the moment, and the compassion to ones’ self. The effectiveness of different mindfulness interventions necessitates giving attention to improve the gaps that were identified related to home-based practice monitoring, competency training of mindfulness teachers, and sound psychometric properties to measure the mindfulness practice.Keywords: mindfulness-based interventions, medically unexplained symptoms, mindfulness-based cognitive therapy, mindfulness-based stress reduction, fibromyalgia, irritable bowel syndrome
Procedia PDF Downloads 1421405 DYVELOP Method Implementation for the Research Development in Small and Middle Enterprises
Authors: Jiří F. Urbánek, David Král
Abstract:
Small and Middle Enterprises (SME) have a specific mission, characteristics, and behavior in global business competitive environments. They must respect policy, rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. Paper aims and purposes are to introduce computational assistance, which enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It is providing for SMS´s global environment the capability and profit to achieve its commitment regarding the effectiveness of the quality management system in customer requirements meeting and also the continual improvement of the organization’s and SME´s processes overall performance and efficiency, as well as its societal security via continual planning improvement. DYVELOP model´s maps - the Blazons are able mathematically - graphically express the relationships among entities, actors, and processes, including the discovering and modeling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission – added value analysis. The crisis management of SMEs is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process is a good indicator and controlling actor of SME continuity and its sustainable development advanced possibilities.Keywords: blazons, computational assistance, DYVELOP method, small and middle enterprises
Procedia PDF Downloads 3411404 The Effect of Second Language Listening Proficiency on Cognitive Control among Young Adult Bilinguals
Authors: Zhilong Xie, Jinwen Huang, Guofang Zeng
Abstract:
The existing body of research on bilingualism has consistently linked the use of multiple languages to enhanced cognitive control. Numerous studies have demonstrated that bilingual individuals exhibit advantages in non-linguistic tasks demanding cognitive control. However, recent investigations have challenged these findings, leading to a debate regarding the extent and nature of bilingual advantages. The adaptive control hypothesis posits that variations in bilingual experiences hold the key to resolving these controversies. This study aims to contribute to this discussion by exploring the impact of second language (L2) listening experience on cognitive control among young Chinese-English bilinguals. By examining this specific aspect of bilingualism, the study offers a perspective on the origins of bilingual advantages. This study employed a range of cognitive tasks, including the Flanker task, Wisconsin Card Sorting Test (WCST), Operation Span Task (OSPAN), and a second language listening comprehension test. After controlling for potential confounding variables such as intelligence, socioeconomic status, and overall language proficiency, independent sample t-test analysis revealed significant differences in performance between groups with high and low L2 listening proficiency in the Flanker task and OSPAN. However, no significant differences emerged between the two groups in the WCST. These findings suggest that L2 listening proficiency has a significant impact on inhibitory control and working memory but not on conflict monitoring or mental set shifting. These specific findings provide a more nuanced understanding of the origins of bilingual advantages within a specific bilingual context, highlighting the importance of considering the nature of bilingual experience when exploring cognitive benefits.Keywords: bilingual advantage, inhibitory control, L2 listening, working memory
Procedia PDF Downloads 101403 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 3341402 The Issues of Irrigation and Drainage in Kebbi State and Their Effective Solution for a Sustainable Agriculture in Kebbi State, Nigeria
Authors: Mumtaz Ahmed Sohag, Ishaq Ahmed Sohag
Abstract:
Kebbi State, located in the Nort-West of Nigeria, is rich in water resources as the major rivers viz. Niger and Rima irrigate a vast majority of land. Besides, there is significant amount of groundwater, which farmers use for agriculture purpose. The groundwater is also a major source of agricultural and domestic water as wells are installed in almost all parts of the region. Although Kebbi State is rich in water, however, there are some pertinent issues which are hampering its agricultural productivity. The low lands (locally called Fadama), has spread out to a vast area. It is inundated every year during the rainy season which lasts from June to September every year. The farmers grow rice during the rainy season when water is standing. They cannot do further agricultural activity for almost two months due to high standing water. This has resulted in widespread waterlogging problem. Besides, the impact of climate change is resulting in rapid variation in river/stream flows. The information about water bodies regarding the availability of water for agricultural and other uses and the behavior of rivers at different flows is seldom available. Furthermore, sediment load (suspended and bedload) is not measured due to which land erosion cannot be countered effectively. This study, carried out in seven different irrigation regions of Kebbi state, found that diversion structures need to be constructed at some strategic locations for the supply of surface water to the farmers. The water table needs to be lowered through an effective drainage system. The monitoring of water bodies is crucial for sound data to help efficient regulation and management of water. Construction of embankments is necessary to control frequent floods in the rivers of Niger and Rima. Furthermore, farmers need capacity and awareness for participatory irrigation management.Keywords: water bodies, floods, agriculture, waterlogging
Procedia PDF Downloads 2381401 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 2301400 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique
Authors: Manar Al-Ateeq
Abstract:
The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)
Procedia PDF Downloads 1761399 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 374