Search results for: gender specific data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31797

Search results for: gender specific data

27507 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model

Procedia PDF Downloads 208
27506 Exploring the Strategy to Identify Seed-Specific Acyl-Hydrolases from Arabidopsis thaliana by Activity-Based Protein Profiling

Authors: M. Latha, Achintya K. Dolui, P. Vijayaraj

Abstract:

Vegetable oils mainly triacylglycerol (TAG) are an essential nutrient in the human diet as well as one of the major global commodity. There is a pressing need to enhance the yield of oil production to meet the world’s growing demand. Oil content is controlled by the balance between synthesis and breakdown in the cells. Several studies have established to increase the oil content by the overexpression of oil biosynthetic enzymes. Interestingly the significant oil accumulation was observed with impaired TAG hydrolysis. Unfortunately, the structural, as well as the biochemical properties of the lipase enzymes, is widely unknown, and so far, no candidate gene was identified in seeds except sugar-dependent1 (SDP1). Evidence has shown that SDP1directly responsible for initiation of oil breakdown in the seeds during germination. The present study is the identification of seed-specific acyl-hydrolases by activity based proteome profiling (ABPP) using Arabidopsis thaliana as a model system. The ABPP reveals that around 8 to 10 proteins having the serine hydrolase domain and are expressed during germination of Arabidopsis seed. The N-term sequencing, as well as LC-MS/MS analysis, was performed for the differentially expressed protein during germination. The coding region of the identified proteins was cloned, and lipases activity was assessed with purified recombinant protein. The enzyme assay was performed against various lipid substrates, and we have observed the acylhydrolase activity towards lysophosphatidylcholine and monoacylglycerol. Further, the functional characteristic of the identified protein will reveal the physiological significance the enzyme in oil accumulation.

Keywords: lipase, lipids, vegetable oil, triacylglycerol

Procedia PDF Downloads 189
27505 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 320
27504 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells

Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika

Abstract:

Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.

Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine

Procedia PDF Downloads 218
27503 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 112
27502 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 377
27501 Factors Related to Health Promotion Behavior of Older Employees in Factory

Authors: Kanda Janyam, Piyaporn Vijit

Abstract:

Background: As a consequence of sustained declines in fertility and mortality during the last three decades of the 20th century, Thailand faces a rapidly growing population of older persons. This demographic change directly affect Thailand workforce. Therefore, the study of health promotion behaviour of the older employees will benefit the employers as they can then develop the preparation for promoting well-being in older persons. Purpose: The current study aims to investigate health promotion behaviour and factors related to health promotion behaviour of older employees in factory. Methodology: The research instrument was questionnaire on health promotion behaviour and semi-structured interviews. The questionnaire was launched with 326 employees aged between 45-59 years in three factories in Songkhla Province, southern Thailand. The data collection started in December 2011. The data were analysed with mean, standard deviation, and correlation. Results: The results revealed that overall health promotion behaviour of the older employees in factory was at a high level. Moreover, when considered by aspect, it was found that their responsibility for health, nutrition, success in life, interpersonal relationship were at a high level while stress management, and exercise were at a moderate level. The results from correlation analysis indicated that the overall health promotion behaviour was positively related to knowledge of health promotion behaviour, attitude toward health promotion behaviour, health perception, the policy of health promotion, participation in health promotion activities, convenience in obtaining health promotion services, health resources, advice from people supporting health, and information received from the media. In addition, the results of the interviews with four key informants helped to confirm the factors related to health promotion behaviour of older employees in factory. Therefore, health promotion for elderly employees in factory is likely to be successful, if the support is given to the four health promotion factors that are divided into: leading factors consisting of attitude toward health promotion behaviour, and health perception, and supporting factors consisting of advice from other people, and information on health from various media. Practical implications: The results of the study identified the factors related to health promotion behaviour of older employees in factory. Such information will benefit employers as they can then develop specific strategies to increase their staffs’ well-being and, hence, presumably enhance the organization productivity.

Keywords: health promotion behavior, older, employee, factory

Procedia PDF Downloads 268
27500 Acclimatation of Bacterial Communities for Biohydrogen Production by Co-Digestion Process in Batch and Continuous Systems

Authors: Gómez Romero Jacob, García Peña Elvia Inés

Abstract:

The co-digestion process of crude cheese whey (CCW) with fruit vegetable waste (FVW) for biohydrogen production was investigated in batch and continuous systems, in stirred 1.8 L bioreactors at 37°C. Five different C/N ratios (7, 17, 21, 31, and 46) were tested in batch systems. While, in continuous system eight conditions were evaluated, hydraulic retention time (from 60 to 10 h) and organic load rate (from 21.96 to 155.87 g COD/L d). Data in batch tests showed a maximum specific biohydrogen production rate of 10.68 mmol H2/Lh and a biohydrogen yield of 449.84 mL H2/g COD at a C/N ratio of 21. In continuous co-digestion system, the optimum hydraulic retention time and organic loading rate were 17.5 h and 80.02 g COD/L d, respectively. Under these conditions, the highest volumetric production hydrogen rate (VPHR) and hydrogen yield were 11.02 mmol H2/L h, 800 mL H2/COD, respectively. A pyrosequencing analysis showed that the main acclimated microbial communities for co-digestion studies consisted of Bifidobacterium, with 85.4% of predominance. Hydrogen producing bacteria such as Klebsiella (9.1%), Lactobacillus (0.97%), Citrobacter (0.21%), Enterobacter (0.27%), and Clostridium (0.18%) were less abundant at this culture period. The microbial population structure was correlated with the lactate, acetate, and butyrate profiles obtained. Results demonstrated that the co-digestion of CCW with FVW improves biohydrogen production due to a better nutrient balance and improvement of the system’s buffering capacity.

Keywords: acclimatation, biohydrogen, co-digestion, microbial community

Procedia PDF Downloads 561
27499 The Readiness of Bodies Corporate in South Africa for Third Generation Sectional Title Legislation: An Accountancy Perspective

Authors: Leandi Steenkamp

Abstract:

After being in effect since the late 1970s, first generation sectional title legislation in South Africa was completely overhauled in recent years into what is now commonly referred to as third generation sectional title legislation. The original Sectional Titles Act was split into three separate statutes, namely the Sectional Titles Schemes Management Act No. 8 of 2011, the Sectional Titles Amendment Act No. 33 of 2013 and the Community Schemes Ombud Service Act No. 9 of 2011, with various Regulations detailing how the different acts should be applied in practice. Even though some of the changes effected by the new legislation is simply technical adjustments and replications of the original first generation legislation, the new acts introduce a number of significant changes that will have an effect on accountancy and financial management aspects of sectional title schemes in future. No academic research has been undertaken on third generation sectional title legislation in South Africa from an accountancy and financial management perspective as yet. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on the new third generation sectional title legislation, with specific reference to accountancy-related aspects. Secondly, the empirical findings of accountancy-related aspects from the results of a quantitative study on a sample of bodies corporate will be discussed. The sample of bodies corporate was selected from four different municipal areas in South Africa. Specific reference will be made to the readiness of bodies corporate regarding the provisions of the new legislation. Thirdly, practical recommendations will be made on how bodies corporate can prepare for the new legislative aspects, and further research opportunities in this regard will be discussed.

Keywords: accountancy, body corporate, sectional title, third generation sectional title legislation

Procedia PDF Downloads 307
27498 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 183
27497 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 342
27496 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 169
27495 Silymarin Loaded Mesoporous Silica Nanoparticles: Preparation, Optimization, Pharmacodynamic and Oral Multi-Dose Safety Assessment

Authors: Sarah Nasr, Maha M. A. Nasra, Ossama Y. Abdallah

Abstract:

The present work aimed to prepare Silymarin loaded MCM-41 type mesoporous silica nanoparticles (MSNs) and to assess the system’s solubility enhancement ability on the pharmacodynamic performance of Silymarin as a hepatoprotective agent. MSNs prepared by soft-templating technique, were loaded with Silymarin, characterized for particle size, zeta potential, surface properties, DSC and XRPD. DSC and specific surface area data confirmed deposition of Silymarin in an amorphous state in MSNs’ pores. In-vitro drug dissolution testing displayed enhanced dissolution rate of Silymarin upon loading on MSNs. High dose Acetaminophen was then used to inflict hepatic injury upon albino male Wistar rats simultaneously receiving either free Silymarin, Silymarin loaded MSNs or blank MSNs. Plasma AST, ALT, albumin and total protein and liver homogenate content of TBARs or LDH as measures of antioxidant drug action were assessed for all animal groups. Results showed a significant superiority of Silymarin loaded MSNs to free drug in almost all parameters. Meanwhile prolonged administration of blank MSNs had no evident toxicity on rats.

Keywords: mesoporous silica nanoparticles, safety, solubility enhancement, silymarin

Procedia PDF Downloads 336
27494 Sales Patterns Clustering Analysis on Seasonal Product Sales Data

Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho

Abstract:

As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.

Keywords: clustering, distribution, sales pattern, seasonal product

Procedia PDF Downloads 604
27493 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 348
27492 Family Homicide: A Comparison of Rural and Urban Communities in California

Authors: Bohsiu Wu

Abstract:

This study compares the differences in social dynamics between rural and urban areas in California to explain homicides involving family members. It is hypothesized that rural homicides are better explained by social isolation and lack of intervention resources, whereas urban homicides are attributed to social disadvantage factors. Several critical social dynamics including social isolation, social disadvantages, acculturation, and intervention resources were entered in a hierarchical linear model (HLM) to examine whether county-level factors affect how each specific dynamic performs at the ZIP code level, a proxy measure for communities. Homicide data are from the Supplementary Homicide Report for all 58 counties in California from 1997 to 1999. Predictors at both the county and ZIP code levels are derived from the 2000 US census. Preliminary results from a HLM analysis show that social isolation is a significant but moderate predictor to explain rural family homicide and various social disadvantage factors are significant factors accounting for urban family homicide. Acculturation has little impact. Rurality and urbanity appear to interact with various social dynamics in explaining family homicide. The implications for prevention at both the county and community level as well as directions for future study on the differences between rural and urban locales are explored in the paper.

Keywords: communities, family, HLM, homicide, rural, urban

Procedia PDF Downloads 329
27491 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 495
27490 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 366
27489 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions

Authors: A. Majczak, G. Baranski, K. Pietrykowski

Abstract:

Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.

Keywords: aircraft, diesel, engine testing, opposed piston

Procedia PDF Downloads 157
27488 Evaluating the Effectiveness of Science Teacher Training Programme in National Colleges of Education: a Preliminary Study, Perceptions of Prospective Teachers

Authors: A. S. V Polgampala, F. Huang

Abstract:

This is an overview of what is entailed in an evaluation and issues to be aware of when class observation is being done. This study examined the effects of evaluating teaching practice of a 7-day ‘block teaching’ session in a pre -service science teacher training program at a reputed National College of Education in Sri Lanka. Effects were assessed in three areas: evaluation of the training process, evaluation of the training impact, and evaluation of the training procedure. Data for this study were collected by class observation of 18 teachers during 9th February to 16th of 2017. Prospective teachers of science teaching, the participants of the study were evaluated based on newly introduced format by the NIE. The data collected was analyzed qualitatively using the Miles and Huberman procedure for analyzing qualitative data: data reduction, data display and conclusion drawing/verification. It was observed that the trainees showed their confidence in teaching those competencies and skills. Teacher educators’ dissatisfaction has been a great impact on evaluation process.

Keywords: evaluation, perceptions & perspectives, pre-service, science teachering

Procedia PDF Downloads 316
27487 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 416
27486 Comparative Demography of Lady Beetle, Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) with Respect to Different Aphid Species

Authors: Muhammad Farooq, Muhammad R. Shahid, M. Shakeel, A. Iftikhar, M. Sagheer, Riaz A. Kainth

Abstract:

Comparative demography of Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) was studied with respect to four host aphid species viz; Rhopalosiphum padi, Rhopalosiphum maidis, Sitobion avenae, and Shizaphis graminum under laboratory conditions using Two-sex Age-stage life table instead of traditional age specific life table which considers only female. Results revealed that developmental period from egg to adult of C. septempunctata were shorter on R. padi (16.49 days) whereas longer on R. maidis (22.83 days). Net reproductive rate varied from 110.01 offspring on R. maidis to 288.78 offspring on R. padi. Mean generation time (T) ranged from 29.02 d on R. padi to 39.788 d on R. maidis. Highest to lowest values of intrinsic rate of increase (rm) were recorded on R. padi, S. graminum, S. avenae, and R. maidis (0.194, 0.143, 0.140 and 0.117 d⁻¹, respectively). Highest finite rate of increase was observed on R. padi (1.214 d⁻¹) followed by S. graminum (1.154 d⁻¹) whereas lowest values were obtained on R. maidis and S. avenae (1.124 and 1.150 d⁻¹, respectively). In this study, the data on the life table of both predator and prey provide useful information in the mass rearing and practical application of a natural agent to biological control systems.

Keywords: C. septempunctata, two-sex age-stage life table, population parameters, aphid species

Procedia PDF Downloads 199
27485 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens

Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima

Abstract:

Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.

Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria

Procedia PDF Downloads 417
27484 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)

Authors: Ilona Buchem, Carolin Gellner

Abstract:

The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.

Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records

Procedia PDF Downloads 183
27483 Immigration and Gender Equality – An Analysis of the Labor Market Characteristics of Turkish Migrants Living in Germany

Authors: C. Asarkaya, S. Z. Siretioglu Girgin

Abstract:

Turkish migrants constitute the largest group among people with migration background living in Germany. Turkish women’s labor market participation is of significant importance for their social and economic integration to the German society. This paper thus aims to investigate their labor market positions. Turkish migrant women participate less in the labor market compared to men, and are responsible for most of the housework, child care, and elderly care. This is due to their traditional roles in the family, educational level, insufficient knowledge of German language, and insufficient professional experience. We strongly recommend that wide-reaching integration policies for women are formulated, so as to encourage participation of not only migrant women but also their husbands, fathers and/or brothers, and natives.

Keywords: empowerment, Germany, labor market, migration, Turkish, women

Procedia PDF Downloads 497
27482 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 302
27481 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health

Authors: Minna Pikkarainen, Yueqiang Xu

Abstract:

The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.

Keywords: blockchain, health data, platform, action design

Procedia PDF Downloads 104
27480 The Specificity of Mother's Attitude to a Preschool Child Having Complex Disorders: The Key to Adaptive Functioning

Authors: Alla Tvardovskaya

Abstract:

The family of a child with disabilities is an important mechanism of socialization. The relationship of mother and child with developmental difficulties is a significant predictor of the emergence, development and interiorization of various forms of mental activity. Complex impairments of the child form nonconstructive maternal attitude and destructive behavior strategies that complicate the dyadic relationship ‘mother-child’. The study of psychological characteristics of mother's personality was conducted within four years, and adaptive abilities of a child with a complex disorder were evaluated as well. 25 diads (25 mothers and 25 preschool children aged between 4-7 years with complex developmental disorders) took part in the study. Typological features of mothers rearing deafblind preschoolers are described. Constructive and non-constructive types of mothers’ attitude to a pre-school child with complex disorders are specified. The research shows that mothers of deafblind children are more depressed, they are engaged in children’s rearing more, and at the same time they experience difficulties to control negative emotions towards children or demonstrate impulsive behavior with a high level of anxiety. The correlation analysis of relationships between Vineland scales and the dominant type of mothers’ attitude to a child shows the presence of both general and specific links. Adaptive profile analysis of a child with complex disabilities allows to plan specific ways to increase their adaptation by developing a dyadic constructive relationship system. Techniques to develop constructive parental attitudes toward the child are proposed.

Keywords: adaptive behavior, complex disorder, constructive maternal attitude, deaf-blindness, pre-school child

Procedia PDF Downloads 268
27479 Spatial Variability of Soil Metal Contamination to Detect Cancer Risk Zones in Coimbatore Region of India

Authors: Aarthi Mariappan, Janani Selvaraj, P. B. Harathi, M. Prashanthi Devi

Abstract:

Anthropogenic modification of the urban environment has largely increased in the recent years in order to sustain the growing human population. Intense industrial activity, permanent and high traffic on the roads, a developed subterranean infrastructure network, land use patterns are just some specific characteristics. Every day, the urban environment is polluted by more or less toxic emissions, organic or metals wastes discharged from specific activities such as industrial, commercial, municipal. When these eventually deposit into the soil, the physical and chemical properties of the surrounding soil is changed, transforming it into a human exposure indicator. Metals are non-degradable and occur cumulative in soil due to regular deposits are a result of permanent human activity. Due to this, metals are a contaminant factor for soil when persistent over a long period of time and a possible danger for inhabitant’s health on prolonged exposure. Metals accumulated in contaminated soil may be transferred to humans directly, by inhaling the dust raised from top soil, or by ingesting, or by dermal contact and indirectly, through plants and animals grown on contaminated soil and used for food. Some metals, like Cu, Mn, Zn, are beneficial for human’s health and represent a danger only if their concentration is above permissible levels, but other metals, like Pb, As, Cd, Hg, are toxic even at trace level causing gastrointestinal and lung cancers. In urban areas, metals can be emitted from a wide variety of sources like industrial, residential, commercial activities. Our study interrogates the spatial distribution of heavy metals in soil in relation to their permissible levels and their association with the health risk to the urban population in Coimbatore, India. Coimbatore region is a high cancer risk zone and case records of gastro intestinal and respiratory cancer patients were collected from hospitals and geocoded in ArcGIS10.1. The data of patients pertaining to the urban limits were retained and checked for their diseases history based on their diagnosis and treatment. A disease map of cancer was prepared to show the disease distribution. It has been observed that in our study area Cr, Pb, As, Fe and Mg exceeded their permissible levels in the soil. Using spatial overlay analysis a relationship between environmental exposure to these potentially toxic elements in soil and cancer distribution in Coimbatore district was established to show areas of cancer risk. Through this, our study throws light on the impact of prolonged exposure to soil contamination in soil in the urban zones, thereby exploring the possibility to detect cancer risk zones and to create awareness among the exposed groups on cancer risk.

Keywords: soil contamination, cancer risk, spatial analysis, India

Procedia PDF Downloads 403
27478 A Generation Outside: Afghan Refugees in Greece 2003-2016

Authors: Kristina Colovic, Mari Janikian, Nikolaos Takis, Fotini-Sonia Apergi

Abstract:

A considerable number of Afghan asylum seekers in Greece are still waiting for answers about their future and status for personal, social and societal advancement. Most have been trapped in a stalemate of continuously postponed or temporarily progressed levels of integration into the EU/Greek process of asylum. Limited quantitative research exists investigating the psychological effects of long-term displacement among Afghans refugees in Greece. The purpose of this study is to investigate factors that are associated with and predict psychological distress symptoms among this population. Data from a sample of native Afghan nationals (N > 70) living in Greece for approximately the last ten years will be collected from May to July 2016. Criteria for participation include the following: being 18 years of age or older, and emigration from Afghanistan to Greece from 2003 onwards (i.e., long-term refugees or part of the 'old system of asylum'). Snowball sampling will be used to recruit participants, as this is considered the most effective option when attempting to study refugee populations. Participants will complete self-report questionnaires, consisting of the Afghan Symptom Checklist (ASCL), a culturally validated measure of psychological distress, the World Health Organization Quality of Life scale (WHOQOL-BREF), an adapted version of the Comprehensive Trauma Inventory-104 (CTI-104), and a modified Psychological Acculturation Scale. All instruments will be translated in Greek, through the use of forward- and back-translations by bilingual speakers of English and Greek, following WHO guidelines. A pilot study with 5 Afghan participants will take place to check for discrepancies in understanding and for further adapting the instruments as needed. Demographic data, including age, gender, year of arrival to Greece and current asylum status will be explored. Three different types of analyses (descriptive statistics, bivariate correlations, and multivariate linear regression) will be used in this study. Descriptive findings for respondent demographics, psychological distress symptoms, traumatic life events and quality of life will be reported. Zero-order correlations will assess the interrelationships among demographic, traumatic life events, psychological distress, and quality of life variables. Lastly, a multivariate linear regression model will be estimated. The findings from the study will contribute to understanding the determinants of acculturation, distress and trauma on daily functioning for Afghans in Greece. The main implications of the current study will be to advocate for capacity building and empower communities through effective program evaluation and design for mental health services for all refugee populations in Greece.

Keywords: Afghan refugees, evaluation, Greece, mental health, quality of life

Procedia PDF Downloads 290