Search results for: fluid replacement modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4542

Search results for: fluid replacement modelling

252 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 477
251 Applying Biculturalism in Studying Tourism Host Community Cultural Integrity and Individual Member Stress

Authors: Shawn P. Daly

Abstract:

Communities heavily engaged in the tourism industry discover their values intersect, meld, and conflict with those of visitors. Maintaining cultural integrity in the face of powerful external pressures causes stress among society members. This effect represents a less studied aspect of sustainable tourism. The present paper brings a perspective unique to the tourism literature: biculturalism. The grounded theories, coherent hypotheses, and validated constructs and indicators of biculturalism represent a sound base from which to consider sociocultural issues in sustainable tourism. Five models describe the psychological state of individuals operating at cultural crossroads: assimilation (joining the new culture), acculturation (grasping the new culture but remaining of the original culture), alternation (varying behavior to cultural context), multicultural (maintaining distinct cultures), and fusion (blending cultures). These five processes divide into two units of analysis (individual and society), permitting research questions at levels important for considering sociocultural sustainability. Acculturation modelling has morphed into dual processes of acculturation (new culture adaptation) and enculturation (original culture adaptation). This dichotomy divides sustainability research questions into human impacts from assimilation (acquiring new culture, throwing away original), separation (rejecting new culture, keeping original), integration (acquiring new culture, keeping original), and marginalization (rejecting new culture, throwing away original). Biculturalism is often cast in terms of its emotional, behavioral, and cognitive dimensions. Required cultural adjustments and varying levels of cultural competence lead to physical, psychological, and emotional outcomes, including depression, lowered life satisfaction and self-esteem, headaches, and back pain—or enhanced career success, social skills, and life styles. Numerous studies provide empirical scales and research hypotheses for sustainability research into tourism’s causality and effect on local well-being. One key issue in applying biculturalism to sustainability scholarship concerns identification and specification of the alternative new culture contacting local culture. Evidence exists for tourism industry, universal tourist, and location/event-specific tourist culture. The biculturalism paradigm holds promise for researchers examining evolving cultural identity and integrity in response to mass tourism. In particular, confirmed constructs and scales simplify operationalization of tourism sustainability studies in terms of human impact and adjustment.

Keywords: biculturalism, cultural integrity, psychological and sociocultural adjustment, tourist culture

Procedia PDF Downloads 382
250 Biochemical and Cellular Correlates of Essential Oil of Pistacia Integerrima against in vitro and Murine Models of Bronchial Asthma

Authors: R. L. Shirole, N. L. Shirole, R. B. Patil, M. N. Saraf

Abstract:

The present investigation aimed to elucidate the probable mechanism of antiasthmatic action of essential oil of Pistacia integerrima J.L. Stewart ex Brandis galls (EOPI). EOPI was investigated for its potential antiasthmatic action using in vitro antiallergic assays mast cell degranulation and soyabean lipoxidase enzyme activit, and spasmolytic action using isolated guinea pig ileum preparation. In vivo studies included lipopolysaccharide-induced bronchial inflammation in rats and airway hyperresponsiveness in ovalbumin in sensitized guinea pigs using spirometry. Data was analysed by GraphPad Prism 5.01 and results were expressed as means ± SEM. P < 0.05 was considered to be significant. EOPI inhibits 5-lipoxidase enzyme activity, DPPH scavenging activity and erythropoietin- induced angiogenesis. It showed dose dependent anti-allergic activity by inhibiting compound 48/80 induced mast cell degranulation. The finding that essential oil induced inhibition of transient contraction of acetylcholine in calcium free medium, and relaxation of S-(-)-Bay 8644-precontracted isolated guinea pig ileum jointly suggest that suggesting that the L-subtype Cav channel is involved in spasmolytic action of EOPI. Treatment with EOPI dose dependently (7.5, 15 and 30 mg/kg i.p.) inhibited lipopolysaccharide- induced increased in total cell count, neutrophil count, nitrate-nitrite, total protein, albumin levels in bronchoalveolar fluid and myeloperoxidase levels in lung homogenates. Mild diffused lesions involving focal interalveolar septal, intraluminal infiltration of neutrophils were observed in EOPI (7.5 &15 mg/kg) pretreated while no abnormality was detected in EOPI (30 mg/kg) and roflumilast (1mg/kg) pretreated rats. Roflumilast was used as standard. EOPI reduced the respiratory flow due to gasping in ovalbumin sensitized guinea pigs. The study demonstrates the effectiveness of EOPI in bronchial asthma possibly related to its ability to inhibit L-subtype Cav channel, mast cell stabilization, antioxidant, angiostatic and through inhibition of 5-lipoxygenase enzyme.

Keywords: asthma, lipopolysaccharide, spirometry, Pistacia integerrima J.L. Stewart ex Brandis, essential oil

Procedia PDF Downloads 264
249 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 260
248 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities

Authors: Paul J. McKay

Abstract:

Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.

Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)

Procedia PDF Downloads 49
247 Strategies to Mitigate Disasters at the Hajj Religious Festival Using GIS and Agent Based Modelling

Authors: Muteb Alotaibi, Graham Clarke, Nick Malleson

Abstract:

The Hajj religious festival at Mina in Saudi Arabia has always presented the opportunity for injuries or deaths. For example, in 1990, a stampede killed 1426 pilgrims, whilst in 1997, 343 people were killed and 1500 injured due to a fire fuelled by high winds sweeping through the tent city in Mina.Many more minor incidents have occurred since then. It is predicted that 5 million pilgrims will soon perform the ritual at Mina (which is, in effect, a temporary city built each year in the desert), which might lead in the future to severe congestion and accidents unless the research is conducted on actions that contribute positively to improving the management of the crowd and facilitating the flow of pilgrims safely and securely. To help prevent further disasters, it is important to first plan better, more accessible locations for emergency services across Mina to ensure a good service for pilgrims. In this paper, we first use a Location Allocation Model (LAM) within a network GIS to examine the optimal locations for key services in the temporary city of Mina. This has been undertaken in relation to the location and movement of the pilgrims during the six day religious festival. The results of various what-if scenarios have been compared against the current location of services. A major argument is that planners should be flexible and locate facilities at different locations throughout the day and night. The use of location-allocation models in this type of comparative static mode has rarely been operationalised in the literature. Second, we model pilgrim movements and behaviours along with the most crowded parts of the network. This has been modelled using an agent-based model. This model allows planners to understand the key bottlenecks in the network and at what usage levels the paths become critically congested. Thus the paper has important implications and recommendations for future disaster planning strategies. This will enable planners to see at what stage in the movements of pilgrims problems occur in terms of potential crushes and trampling incidents. The main application of this research was only customised for pedestrians as the concentration only for pedestrians who move to Jamarat via foot. Further, the network in the middle of Mina was only dedicated for pedestrians for safety, so no Buses, trains and private cars were allowed in this area to prevent the congestion within this network. Initially, this research focus on Mina city as ‘temporary city’ and also about service provision in temporary cities, which is not highlighted in literature so far. Further, it is the first study which use the dynamic demand to optimise the services in the case of day and night time. Moreover, it is the first study which link the location allocation model for optimising services with ABM to find out whether or not the service location is located in the proper location in which it’s not affecting on crowd movement in mainstream flow where some pilgrims need to have health services.

Keywords: ABM, crowd management, hajj, temporary city

Procedia PDF Downloads 102
246 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept

Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani

Abstract:

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy

Procedia PDF Downloads 315
245 Regional Rates of Sand Supply to the New South Wales Coast: Southeastern Australia

Authors: Marta Ribo, Ian D. Goodwin, Thomas Mortlock, Phil O’Brien

Abstract:

Coastal behavior is best investigated using a sediment budget approach, based on the identification of sediment sources and sinks. Grain size distribution over the New South Wales (NSW) continental shelf has been widely characterized since the 1970’s. Coarser sediment has generally accumulated on the outer shelf, and/or nearshore zones, with the latter related to the presence of nearshore reef and bedrocks. The central part of the NSW shelf is characterized by the presence of fine sediments distributed parallel to the coastline. This study presents new grain size distribution maps along the NSW continental shelf, built using all available NSW and Commonwealth Government holdings. All available seabed bathymetric data form prior projects, single and multibeam sonar, and aerial LiDAR surveys were integrated into a single bathymetric surface for the NSW continental shelf. Grain size information was extracted from the sediment sample data collected in more than 30 studies. The information extracted from the sediment collections varied between reports. Thus, given the inconsistency of the grain size data, a common grain size classification was her defined using the phi scale. The new sediment distribution maps produced, together with new detailed seabed bathymetric data enabled us to revise the delineation of sediment compartments to more accurately reflect the true nature of sediment movement on the inner shelf and nearshore. Accordingly, nine primary mega coastal compartments were delineated along the NSW coast and shelf. The sediment compartments are bounded by prominent nearshore headlands and reefs, and major river and estuarine inlets that act as sediment sources and/or sinks. The new sediment grain size distribution was used as an input in the morphological modelling to quantify the sediment transport patterns (and indicative rates of transport), used to investigate sand supply rates and processes from the lower shoreface to the NSW coast. The rate of sand supply to the NSW coast from deep water is a major uncertainty in projecting future coastal response to sea-level rise. Offshore transport of sand is generally expected as beaches respond to rising sea levels but an onshore supply from the lower shoreface has the potential to offset some of the impacts of sea-level rise, such as coastline recession. Sediment exchange between the lower shoreface and sub-aerial beach has been modelled across the south, central, mid-north and far-north coast of NSW. Our model approach is that high-energy storm events are the primary agents of sand transport in deep water, while non-storm conditions are responsible for re-distributing sand within the beach and surf zone.

Keywords: New South Wales coast, off-shore transport, sand supply, sediment distribution maps

Procedia PDF Downloads 209
244 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.

Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems

Procedia PDF Downloads 108
243 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 208
242 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 389
241 Morphological and Molecular Evaluation of Dengue Virus Serotype 3 Infection in BALB/c Mice Lungs

Authors: Gabriela C. Caldas, Fernanda C. Jacome, Arthur da C. Rasinhas, Ortrud M. Barth, Flavia B. dos Santos, Priscila C. G. Nunes, Yuli R. M. de Souza, Pedro Paulo de A. Manso, Marcelo P. Machado, Debora F. Barreto-Vieira

Abstract:

The establishment of animal models for studies of DENV infections has been challenging, since circulating epidemic viruses do not naturally infect nonhuman species. Such studies are of great relevance to the various areas of dengue research, including immunopathogenesis, drug development and vaccines. In this scenario, the main objective of this study is to verify possible morphological changes, as well as the presence of antigens and viral RNA in lung samples from BALB/c mice experimentally infected with an epidemic and non-neuroadapted DENV-3 strain. Male BALB/c mice, 2 months old, were inoculated with DENV-3 by intravenous route. After 72 hours of infection, the animals were euthanized and the lungs were collected. Part of the samples was processed by standard technique for analysis by light and transmission electronic microscopies and another part was processed for real-time PCR analysis. Morphological analyzes of lungs from uninfected mice showed preserved tissue areas. In mice infected with DENV-3, the analyzes revealed interalveolar septum thickening with presence of inflammatory infiltrate, foci of alveolar atelectasis and hyperventilation, bleeding foci in the interalveolar septum and bronchioles, peripheral capillary congestion, accumulation of fluid in the blood capillary, signs of interstitial cell necrosis presence of platelets and mononuclear inflammatory cells circulating in the capillaries and/or adhered to the endothelium. In addition, activation of endothelial cells, platelets, mononuclear inflammatory cell and neutrophil-type polymorphonuclear inflammatory cell evidenced by the emission of cytoplasmic membrane prolongation was observed. DEN-like particles were seen in the cytoplasm of endothelial cells. The viral genome was recovered from 3 in 12 lung samples. These results demonstrate that the BALB / c mouse represents a suitable model for the study of the histopathological changes induced by DENV infection in the lung, with tissue alterations similar to those observed in human cases of DEN.

Keywords: BALB/c mice, dengue, histopathology, lung, ultrastructure

Procedia PDF Downloads 235
240 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 45
239 Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach

Authors: Sofie Verstraete, Stijn Debruyne, Frederik Desplentere

Abstract:

Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line.

Keywords: adhesive bonding, bio-fiber reinforced composite, flax fibers, lap joint

Procedia PDF Downloads 106
238 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season

Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada

Abstract:

A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).

Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model

Procedia PDF Downloads 516
237 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 60
236 Sentiment Analysis on University Students’ Evaluation of Teaching and Their Emotional Engagement

Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís

Abstract:

Teaching practices have been widely studied in relation to students' outcomes, positioning themselves as one of their strongest catalysts and influencing students' emotional experiences. In the higher education context, teachers become even more crucial as many students ground their decisions on which courses to enroll in based on opinions and ratings of teachers from other students. Unfortunately, sometimes universities do not provide the personal, social, and academic stimulation students demand to be actively engaged. To evaluate their teachers, universities often rely on students' evaluations of teaching (SET) collected via Likert scale surveys. Despite its usefulness, such a method has been questioned in terms of validity and reliability. Alternatively, researchers can rely on qualitative answers to open-ended questions. However, the unstructured nature of the answers and a large amount of information obtained requires an overwhelming amount of work. The present work presents an alternative approach to analyse such data: sentiment analysis. To the best of our knowledge, no research before has included results from SA into an explanatory model to test how students' sentiments affect their emotional engagement in class. The sample of the present study included a total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) from the Educational Sciences faculty of a public university in Spain. Data collection took place during the academic year 2021-2022. Students accessed an online questionnaire using a QR code. They were asked to answer the following open-ended question: "If you had to explain to a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?". Sentiment analysis was performed using Microsoft's pre-trained model. The reliability of the measure was estimated between the tool and one of the researchers who coded all answers independently. The Cohen's kappa and the average pairwise percent agreement were estimated with ReCal2. Cohen's kappa was .68, and the agreement reached was 90.8%, both considered satisfactory. To test the hypothesis relations among SA and students' emotional engagement, a structural equation model (SEM) was estimated. Results demonstrated a good fit of the data: RMSEA = .04, SRMR = .03, TLI = .99, CFI = .99. Specifically, the results showed that student’s sentiment regarding their teachers’ teaching positively predicted their emotional engagement (β == .16 [.02, -.30]). In other words, when students' opinion toward their instructors' teaching practices is positive, it is more likely for students to engage emotionally in the subject. Altogether, the results show a promising future for sentiment analysis techniques in the field of education. They suggest the usefulness of this tool when evaluating relations among teaching practices and student outcomes.

Keywords: sentiment analysis, students' evaluation of teaching, structural-equation modelling, emotional engagement

Procedia PDF Downloads 62
235 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 245
234 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 121
233 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 31
232 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 438
231 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers

Authors: Abidin Tortum, Kubra Kocabey

Abstract:

One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.

Keywords: rectangular core, power transformer, transformer, productivity

Procedia PDF Downloads 101
230 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 451
229 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: down hole safety valve, security devices, installation, oil-wells

Procedia PDF Downloads 243
228 Unlocking New Room of Production in Brown Field; ‎Integration of Geological Data Conditioned 3D Reservoir ‎Modelling of Lower Senonian Matulla Formation, RAS ‎Budran Field, East Central Gulf of Suez, Egypt

Authors: Nader Mohamed

Abstract:

The Late Cretaceous deposits are well developed through-out Egypt. This is due to a ‎transgression phase associated with the subsidence caused by the neo-Tethyan rift event that ‎took place across the northern margin of Africa, resulting in a period of dominantly marine ‎deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, ‎Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided ‎into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, ‎the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian ‎Matulla formations are the most important clastic sequence in the Nezzazat Group because they ‎provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis ‎on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic ‎surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed ‎Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras ‎Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with ‎outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and ‎subdivide the Matulla formation into three units. The lower unit is believed to be the main ‎reservoir where it consists mainly of sands with shale and sandy carbonates, while the other ‎units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an ‎effective technique that assists in reservoir management as decisions concerning development ‎and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as ‎accurately as possible in order to better evaluate, calculate the reserves and to determine the ‎most effective way of recovering as much of the petroleum economically as possible. All ‎available data on Matulla formation are used to build the reservoir structure model, lithofacies, ‎porosity, permeability and water saturation models which are the main parameters that describe ‎the reservoirs and provide information on effective evaluation of the need to develop the oil ‎potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of ‎geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and ‎facies environment interpretation which helped in defining the nature of deposition of Matulla ‎formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the ‎spatial distribution of property and in addition evaluating the unlocked new reservoir areas of ‎Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This ‎study led to adding a new room of production and additional reserves to Ras Budran field. ‎

Keywords: geology, oil and gas, geoscience, sequence stratigraphy

Procedia PDF Downloads 80
227 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 127
226 Effects of Sacubitril and Valsartan on Gut Microbiome

Authors: Wei-Ju Huang, Hung-Pin Hsu

Abstract:

[Background] In congestive heart failure (CHF), it has always been the principle of clinical treatment to control the water retention mechanism in the body to prevent excessive fluid retention. Early control of sympathetic nerves, Renin-Angiotensin-Aldosterone system (RAA system, RAAS), or strengthening of Atrial Natriuretic Peptide (ANP) was the point. In RAA system, related hormones, such as angiotensin, or enzymes in the pathway, such as ACE-I, can be used with corresponding inhibitors to reduce water content.[Aim] In recent years, clinical studies have pointed out that if different mechanisms are combined, the control effect seems to be better. For example, recent studies showed that ENTRESTO, a combination of Sacubitril and Valsartan, is a good new drug for CHF. Sacubitril is a prodrug. After activation, it can inhibit neprilysin and act as a neprilysin inhibitor (ARNI) to reduce the breakdown of natriuretic peptides(ANP). Valsartan is a kind of angiotensin receptor blocker (ARB), both of which are used to treat heart failure at the same time, have excellent curative effects.[Materials and Methods] Considering the side effects of this drug, coughing and a few cases of diarrhea were observed. However, the effect of this drug on the patient's intestinal tract has not been confirmed. On the other hand, studies have pointed out that ANP supplement can improve the CHF and increase the inhibitory effect on cancer cells. Therefore, the purpose of this study is to use a special microbial detection method to prove that whether oral drugs have an effect on microorganisms.The experimental method uses Nissui Compact Dry to observe the situation in different types of microorganisms. After the drug is dissolved in water, it is implanted in a petri dish, and the presence of different microorganisms is detected through different antibody reactions to confirm whether the drug has some toxicology in the gut.[Results and Discussion]From the above experimental results, it can be known that among the effects of Sacubitril and Valsartan on the basic microbial flora of the human body, low doses had no significant effect on Escherichia coli or intestinal bacteria. If Sacubitril or Valsartan with a high concentration of 3mg/ml is used alone or under the stimulation of a high concentration of the two drugs, it has a significant inhibitory effect on Escherichia coli. However, in terms of the effect on intestinal bacteria, high concentration of Sacubitril has a more significant inhibitory effect on intestinal bacteria, while high concentration of Valsartan has a less significant inhibitory effect on intestinal bacteria. The inhibitory effect of the combination of the two drugs on intestinal bacteria is also less significant.[Conclusion]The results of this study can be used as a further reference for the possible side effects of the clinical use of Sacubitril and Valsartan on the intestinal tract of patients,

Keywords: sacubitril, valsartan, entresto, congestive heart failure (CHF)

Procedia PDF Downloads 49
225 Exploring Nature and Pattern of Mentoring Practices: A Study on Mentees' Perspectives

Authors: Nahid Parween Anwar, Sadia Muzaffar Bhutta, Takbir Ali

Abstract:

Mentoring is a structured activity which is designed to facilitate engagement between mentor and mentee to enhance mentee’s professional capability as an effective teacher. Both mentor and mentee are important elements of the ‘mentoring equation’ and play important roles in nourishing this dynamic, collaborative and reciprocal relationship. Cluster-Based Mentoring Programme (CBMP) provides an indigenous example of a project which focused on development of primary school teachers in selected clusters with a particular focus on their classroom practice. A study was designed to examine the efficacy of CBMP as part of Strengthening Teacher Education in Pakistan (STEP) project. This paper presents results of one of the components of this study. As part of the larger study, a cross-sectional survey was employed to explore nature and patterns of mentoring process from mentees’ perspectives in the selected districts of Sindh and Balochistan. This paper focuses on the results of the study related to the question: What are mentees’ perceptions of their mentors’ support for enhancing their classroom practice during mentoring process? Data were collected from mentees (n=1148) using a 5-point scale -‘Mentoring for Effective Primary Teaching’ (MEPT). MEPT focuses on seven factors of mentoring: personal attributes, pedagogical knowledge, modelling, feedback, system requirement, development and use of material, and gender equality. Data were analysed using SPSS 20. Mentees perceptions of mentoring practice of their mentors were summarized using mean and standard deviation. Results showed that mean scale scores on mentees’ perceptions of their mentors’ practices fell between 3.58 (system requirement) and 4.55 (personal attributes). Mentees’ perceives personal attribute of the mentor as the most significant factor (M=4.55) towards streamlining mentoring process by building good relationship between mentor and mentees. Furthermore, mentees have shared positive views about their mentors efforts towards promoting gender impartiality (M=4.54) during workshop and follow up visit. Contrary to this, mentees felt that more could have been done by their mentors in sharing knowledge about system requirement (e.g. school policies, national curriculum). Furthermore, some of the aspects in high scoring factors were highlighted by the mentees as areas for further improvement (e.g. assistance in timetabling, written feedback, encouragement to develop learning corners). Mentees’ perceptions of their mentors’ practices may assist in determining mentoring needs. The results may prove useful for the professional development programme for the mentors and mentees for specific mentoring programme in order to enhance practices in primary classrooms in Pakistan. Results would contribute into the body of much-needed knowledge from developing context.

Keywords: cluster-based mentoring programme, mentoring for effective primary teaching (MEPT), professional development, survey

Procedia PDF Downloads 210
224 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 319
223 Extracellular Polymeric Substances Study in an MBR System for Fouling Control

Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas

Abstract:

Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.

Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS

Procedia PDF Downloads 242