Search results for: traditional learning approach
18239 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 21518238 Developing Second Language Learners’ Reading Comprehension through Content and Language Integrated Learning
Authors: Kaine Gulozer
Abstract:
A strong methodological conception in the practice of teaching, content, and language integrated learning (CLIL) is adapted to boost efficiency in the second language (L2) instruction with a range of proficiency levels. This study aims to investigate whether the incorporation of two different mediums of meaningful CLIL reading activities (in-school and out-of-school settings) influence L2 students’ development of comprehension skills differently. CLIL based instructional methodology was adopted and total of 50 preparatory year students (N=50, 25 students for each proficiency level) from two distinct language proficiency learners (elementary and intermediate) majoring in engineering faculties were recruited for the study. Both qualitative and quantitative methods through a post-test design were adopted. Data were collected through a questionnaire, a reading comprehension test and a semi-structured interview addressed to the two proficiency groups. The results show that both settings in relation to the development of reading comprehension are beneficial, whereas the impact of the reading activities conducted in school settings was higher at the elementary language level of students than that of the one conducted out-of-class settings based on the reported interview results. This study suggests that the incorporation of meaningful CLIL reading activities in both settings for both proficiency levels could create students’ self-awareness of their language learning process and the sense of ownership in successful improvements of field-specific reading comprehension. Further potential suggestions and implications of the study were discussed.Keywords: content and language integrated learning, in-school setting, language proficiency, out-of-school setting, reading comprehension
Procedia PDF Downloads 15118237 Opinions of Pre-Service Teachers on Online Language Teaching: COVID-19 Pandemic Perspective
Authors: Neha J. Nandaniya
Abstract:
In the present research paper researcher put focuses on the opinions of pre-service teachers have been taken regarding online language teaching, which was held during the COVID-19 pandemic and is still going on. The researcher developed a three-point rating scale in Google Forms to find out the views of trainees on online language learning, in which 167 B. Ed. trainees having language content and method gave their responses. After scoring the responses obtained by the investigator, the chi-square value was calculated, and the findings were concluded. The major finding of the study is language learning is not as effective as offline teaching mode.Keywords: online language teaching, ICT competency, B. Ed. trainees, COVID-19 pandemic
Procedia PDF Downloads 8818236 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning
Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic
Abstract:
Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method
Procedia PDF Downloads 26118235 Environmental Assessment of Roll-to-Roll Printed Smart Label
Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois
Abstract:
Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.Keywords: Eco-design, label, life cycle assessment, printed electronics
Procedia PDF Downloads 17118234 A Review: Artificial Intelligence (AI) Driven User Access Management and Identity Governance
Authors: Rupan Preet Kaur
Abstract:
This article reviewed the potential of artificial intelligence in the field of identity and access management (IAM) and identity governance and administration (IGA), the most critical pillars of any organization. The power of leveraging AI in the most complex and huge user base environment was outlined by simplifying and streamlining the user access approvals and re-certifications without any impact on the user productivity and at the same time strengthening the overall compliance of IAM landscape. Certain challenges encountered in the current state were detailed where majority of organizations are still lacking maturity in the data integrity aspect. Finally, this paper concluded that within the realm of possibility, users and application owners can reap the benefits of unified approach provided by AI to improve the user experience, improve overall efficiency, and strengthen the risk posture.Keywords: artificial intelligence, machine learning, user access review, access approval
Procedia PDF Downloads 9818233 Organization Culture: Mediator of Information Technology Competence and IT Governance Effectiveness
Authors: Sonny Nyeko, Moses Niwe
Abstract:
Purpose: This research paper examined the mediation effect of organization culture in the relationship between information technology (IT) competence and IT governance effectiveness in Ugandan public universities. The purpose of the research paper is to examine the role of organizational culture in the relationship between IT competence and IT governance effectiveness. Design/methodology/approach: The paper adopted the MedGraph program, Sobel tests and Kenny and Baron Approach for testing the mediation effects. Findings: It is impeccable that IT competence and organization culture are true drivers of IT governance effectiveness in Ugandan public universities. However, organizational culture reveals partial mediation in the IT competence and IT governance effectiveness relationship. Research limitations/implications: The empirical investigation in this research depends profoundly on public universities. Future research in Ugandan private universities could be undertaken to compare results. Practical implications: To effectively achieve IT governance effectiveness, it means senior management requires IT knowledge which is a vital ingredient of IT competence. Moreover, organizations today ought to adopt cultures that are intended to have them competitive in their businesses, with IT operations not in isolation. Originality/value: Spending thousands of dollars on IT resources in advanced institutes of learning necessitates IT control. Preliminary studies in Ugandan public universities have revealed the ineffective utilization of IT resources. Besides, IT governance issues with IT competence and organization culture remain outstanding. Thus, it’s a new study testing the mediating outcome of organization culture in the association between IT competence and IT governance effectiveness in the Ugandan universities.Keywords: organization culture, IT competence, IT governance, effectiveness, mediating effect, universities, Uganda
Procedia PDF Downloads 14518232 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 20318231 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 2418230 Team Teaching, Students Perception, Challenges, and Remedies for Effective Implementation: A Case Study of the Department of Biology, Alvan Ikoku Federal College of Education, Owerri Imo State, Nigeria
Authors: Daniel Ihemtuge Akim, Micheal O. Ikeanumba
Abstract:
This research focused on team teaching; students perception, challenges, and remedies for effective implementation, a case study of the department of Biology, Alvan Ikoku Federal College of Education, Owerri Imo State, Nigeria. It seeks to address the misconception by students on the use of team teaching as a methodology for learning. Five purposes and five research questions guided this study. Descriptive survey design was used in the study. The students of biology department enrolled in both Bachelor degree and National Certificate in Education in Alvan Ikoku Federal College of Education, Owerri, formed the population size. Simple random sampling technique was used to select the sampled students and 20% of whole lecturers were selected out of the whole given sample size of three hundred and forty (340). The instrument used for data collection was structured 4 point Likert scale questionnaire and analysis was made using mean method. The result revealed that poor time management by lectures, lack of lecture venues, manpower are some of the challenges hindering the effective implementation of team teaching. It was also observed that students perform better in academic when team teaching approach is used than single teaching approach. Finally, recommendations made suggested that teachers involved in team teaching should work together with their teaching strategies and within the time frame to achieve the stated objectives.Keywords: challenges, implementation, perception, team teaching
Procedia PDF Downloads 38318229 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 39318228 Awning: An Unsung Trait in Rice (Oryza Sativa L.)
Authors: Chamin Chimyang
Abstract:
The fast-changing global trend and declining forest region have impacted agricultural lands; animals, especially birds, might become one of the major pests in the near future and go neglected or unreported in many kinds of literature and events, which is mainly because of bird infestation being a pocket-zone problem. This bird infestation can be attributed to the balding of the forest region and the decline in their foraging hotspot due to anthropogenic activity. There are many ways to keep away the birds from agricultural fields, both conventional and non-conventional. But the question here is whether the traditional approach of bird scarring methods such as scare-crows are effective enough. There are many traits in rice that are supposed to keep the birds away from foraging in paddy fields, and the selection of such traits might be rewarding, such as the angle of the flag leaf from the stem, grain size, novelty of any trait in that particular region and also an awning. Awning, as such, is a very particular trait on which negative selection was imposed to such an extent that there has been a decline in the nucleotide responsible for the said trait. Thus, in this particular session, histology, genetics, genes behind the trait and how awns might be one of the solutions to the problem stated above will be discussed in detail.Keywords: bird infestation, awning, negative selection, domestication
Procedia PDF Downloads 3518227 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks
Authors: Anusha M., V. Srikanth
Abstract:
Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios
Procedia PDF Downloads 56518226 Electronic Six-Minute Walk Test (E-6MWT): Less Manpower, Higher Efficiency, and Better Data Management
Authors: C. M. Choi, H. C. Tsang, W. K. Fong, Y. K. Cheng, T. K. Chui, L. Y. Chan, K. W. Lee, C. K. Yuen, P. W. Lau, Y. L. To, K. C. Chow
Abstract:
Six-minute walk test (6MWT) is a sub-maximal exercise test to assess aerobic capacity and exercise tolerance of patients with chronic respiratory disease and heart failure. This has been proven to be a reliable and valid tool and commonly used in clinical situations. Traditional 6MWT is labour-intensive and time-consuming especially for patients who require assistance in ambulation and oxygen use. When performing the test with these patients, one staff will assist the patient in walking (with or without aids) while another staff will need to manually record patient’s oxygen saturation, heart rate and walking distance at every minute and/or carry oxygen cylinder at the same time. Physiotherapist will then have to document the test results in bed notes in details. With the use of electronic 6MWT (E-6MWT), patients wear a wireless oximeter that transfers data to a tablet PC via Bluetooth. Real-time recording of oxygen saturation, heart rate, and distance are displayed. No manual work on recording is needed. The tablet will generate a comprehensive report which can be directly attached to the patient’s bed notes for documentation. Data can also be saved for later patient follow up. This study was carried out in North District Hospital. Patients who followed commands and required 6MWT assessment were included. Patients were assigned to study or control groups. In the study group, patients adopted the E-6MWT while those in control group adopted the traditional 6MWT. Manpower and time consumed were recorded. Physiotherapists also completed a questionnaire about the use of E-6MWT. Total 12 subjects (Study=6; Control=6) were recruited during 11-12/2017. An average number of staff required and time consumed in traditional 6MWT were 1.67 and 949.33 seconds respectively; while in E-6MWT, the figures were 1.00 and 630.00 seconds respectively. Compared to traditional 6MWT, E-6MWT required 67.00% less manpower and 50.10% less in time spent. Physiotherapists (n=7) found E-6MWT is convenient to use (mean=5.14; satisfied to very satisfied), requires less manpower and time to complete the test (mean=4.71; rather satisfied to satisfied), has better data management (mean=5.86; satisfied to very satisfied) and is recommended to be used clinically (mean=5.29; satisfied to very satisfied). It is proven that E-6MWT requires less manpower input with higher efficiency and better data management. It is welcomed by the clinical frontline staff.Keywords: electronic, physiotherapy, six-minute walk test, 6MWT
Procedia PDF Downloads 15518225 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 12418224 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 9518223 Influence of Urban Fabric on Child’s Upbringing: A Comparative Analysis between Modern and Traditional City
Authors: Mohamed A. Tantawy, Nourelhoda A. Hussein, Moataz A. Mahrous
Abstract:
New planning and city design theories are continuously debated and optimized for seeking efficiency and adequacy in economic and life quality aspects. Here, we examine the children-city relationship, to reflect on how modern and traditional cities affect the social climate. We adopt children as a proper caliber for urbanism, as for their very young age, they are independent and attached to family. Their fragility offers a chance to gauge how various urban settings directly affect their feeling of safety, containment, and their perception of belonging for home territory. The importance of street play for the child development process is discussed thoroughly. The authority they have on their play (when and what to play) pushes us to our conclusion. A mediocre built environment characterized by spontaneity and human-scale semi-private urban spaces, is irreplaceable by a perfectly designed far away playgrounds. Street play has a huge role in empowering children for a gradual engagement with grown-ups’ urban flow.Keywords: child's psychology, social activity, street play, urban fabric
Procedia PDF Downloads 31818222 Improving Traditional Methods of Handling Fish from Integrated Pond Culture Systems in Monai Village, New Bussa, Nigeria
Authors: Olokor O. Julius, Ngwu E. Onyebuchi, Ajani K. Emmanuel, Omitoyin O. Bamidele, Olokor O. Linda, Akomas Stella
Abstract:
The study assessed the quality changes of Clarias gariepenus obtained from integrated culture systems (rice, poultry and fish) which were displayed at 31-33oC average daily temperature on the traditional market table used by local fish farmers to sell fish harvested from their ponds and those on an improved table designed for this study. Unlike the conventional table, the improved table was screened against flies and indiscriminate touch by customers. The fishes were displayed on both tables for 9 hours and quality attributes were monitored hourly by trained panelists. For C. gariepinus, the gills, and intestine recorded faster deterioration starting from the fourth and fifth hours while those on the improved table were prolonged by one hour. Scores for skin brightness and texture did not indicate quality deterioration throughout the display period. However, at the end of the storage time, samples on the improved table recorded 1.5 x 104 cfu/g while samples in unscreened table recorded 3.7 x 10 7 cfu/g. The study shows how simple modifications of a traditional practice can help extend keeping qualities of farmed fish, reduce health hazards in local communities where there is no electricity to preserve fish in whatever form despite a boom in aquaculture. Monai community has a fish farm estate of over 200 small holder farmers with annual output capacity of over $10 million dollars. The simple improvement made to farmers practice in this study is to ensure Community hygiene and boost income of peasant fish farmers by improving the market quality of their products.Keywords: fish spoilage, improved handling, income generation, retail table
Procedia PDF Downloads 45018221 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 35218220 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 8518219 Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria
Authors: I. A. Libata
Abstract:
The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology.Keywords: attitudes, students, Birnin-Kebbi, metropolis
Procedia PDF Downloads 40518218 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 10118217 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 44918216 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 7218215 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance
Procedia PDF Downloads 26718214 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 45918213 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning
Authors: Rohan Roberts
Abstract:
The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education
Procedia PDF Downloads 34018212 A Complex Network Approach to Structural Inequality of Educational Deprivation
Authors: Harvey Sanchez-Restrepo, Jorge Louca
Abstract:
Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics
Procedia PDF Downloads 12818211 Exploring the Effect of Using Lesh Model in Enhancing Prospective Mathematics Teachers’ Number Sense
Authors: Areej Isam Barham
Abstract:
Developing students’ number sense is an essential element in the learning of mathematics. Number sense is one of the foundational ideas in mathematics where students need to understand numbers, representing them in different ways, and realize the relationships among numbers. Number sense also reflects students’ understanding of the meaning of operations, how they related to one another, how to compute fluently and make reasonable estimates. Developing students’ number sense in the mathematics classroom requires good preparation for mathematics teachers, those who will direct their students towards the real understanding of numbers and its implementation in the learning of mathematics. This study describes the development of elementary prospective mathematics teachers’ number sense through a mathematics teaching methods course at Qatar University. The study examined the effect of using the Lesh model in enhancing mathematics prospective teachers’ number sense. Thirty-nine elementary prospective mathematics teachers involved in the current study. The study followed an experimental research approach, and quantitative research methods were used to answer the research questions. Pre-post number sense test was constructed and implemented before and after teaching by using the Lesh model. Data were analyzed using Statistical Packages for Social Sciences (SPSS). Descriptive data analysis and t-test were used to examine the impact of using the Lesh model in enhancing prospective teachers’ number sense. Finding of the study indicated poor number sense and limited numeracy skills before implementing the use of the Lesh model, which highly demonstrate the importance of the study. The results of the study also revealed a positive impact on the use of the Lesh model in enhancing prospective teachers’ number sense with statistically significant differences. The discussion of the study addresses different features and issues related to the participants’ number sense. In light of the study, the research presents recommendations and suggestions for the future development of mathematics prospective teachers’ number sense.Keywords: number sense, Lesh model, prospective mathematics teachers, development of number sense
Procedia PDF Downloads 14418210 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 149