Search results for: cluster model approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26810

Search results for: cluster model approach

22580 Towards Natively Context-Aware Web Services

Authors: Hajer Taktak, Faouzi Moussa

Abstract:

With the ubiquitous computing’s emergence and the evolution of enterprises’ needs, one of the main challenges is to build context-aware applications based on Web services. These applications have become particularly relevant in the pervasive computing domain. In this paper, we introduce our approach that optimizes the use of Web services with context notions when dealing with contextual environments. We focus particularly on making Web services autonomous and natively context-aware. We implement and evaluate the proposed approach with a pedagogical example of a context-aware Web service treating temperature values. 

Keywords: context-aware, CXF framework, ubiquitous computing, web service

Procedia PDF Downloads 341
22579 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 126
22578 Early Design Prediction of Submersible Maneuvers

Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano

Abstract:

This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.

Keywords: submarine maneuvers, submarine, maneuvering, dynamics

Procedia PDF Downloads 618
22577 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing

Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp

Abstract:

By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.

Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation

Procedia PDF Downloads 187
22576 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 208
22575 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier

Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi

Abstract:

The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.

Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance

Procedia PDF Downloads 473
22574 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 261
22573 An Evaluation of Rational Approach to Management by Objectives in Construction Contracting Organisation

Authors: Zakir H. Shaik, Punam L. Vartak

Abstract:

Management By Objectives (MBO) is a management technique in which objectives of an organisation are conveyed to the employees to establish the individual goals. These objectives and goals are then monitored and assessed jointly by management and the employee time to time. This tool can be used for planning, monitoring as well as for performance appraisal. The success of an organisation is largely dependent on its’s Vision. Thus, it is of paramount importance to achieve the realm of vision through a mission which is well crafted within the organisation to address the objectives. The success of the mission depends upon how realistic and action oriented philosophical approach, an organisation caters to; and how the individual goals are set to track and meet the objectives. Thus, focused and passionate efforts of the team, assigned for the mission, are an absolute obligation for achieving the vision of any organisation. Any construction site is generally a controlled disorder having huge investments, resources and logistics involved. The Construction progression is time-consuming with many isolated as well as interconnected activities. Traditional MBO approach can be unsuccessful if planning and control is non-realistic and inflexible. Moreover, the Construction Industry is far behind understanding these concepts. It is important to address the employee engagement in defining and creating awareness to achieve the targets. Besides, current economic environment and competitive world demands refined management tools to achieve profit, growth and survival of the business. Therefore, the necessity of rational MBO becomes vital part towards the success of an organisation. This paper details about the philosophical assumptions to develop the grounded theory in lieu of achieving objectives through RATIONAL MBO approach in Construction Contracting Organisations. The goals and objectives of the Construction Contracting Organisations can be achieved efficiently by adopting this RATIONAL MBO approach, as those are based on realistic, logical and balanced assumptions.

Keywords: growth, leadership, management by objectives, Management By Objectives (MBO), profit, rational

Procedia PDF Downloads 138
22572 Optimized Text Summarization Model on Mobile Screens for Sight-Interpreters: An Empirical Study

Authors: Jianhua Wang

Abstract:

To obtain key information quickly from long texts on small screens of mobile devices, sight-interpreters need to establish optimized summarization model for fast information retrieval. Four summarization models based on previous studies were studied including title+key words (TKW), title+topic sentences (TTS), key words+topic sentences (KWTS) and title+key words+topic sentences (TKWTS). Psychological experiments were conducted on the four models for three different genres of interpreting texts to establish the optimized summarization model for sight-interpreters. This empirical study shows that the optimized summarization model for sight-interpreters to quickly grasp the key information of the texts they interpret is title+key words (TKW) for cultural texts, title+key words+topic sentences (TKWTS) for economic texts and topic sentences+key words (TSKW) for political texts.

Keywords: different genres, mobile screens, optimized summarization models, sight-interpreters

Procedia PDF Downloads 298
22571 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 492
22570 Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory

Authors: Liu Canqi, Zeng Junsheng

Abstract:

This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting.

Keywords: traffic field, social economics, traffic mass, bottleneck, deceleration delay

Procedia PDF Downloads 48
22569 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation

Procedia PDF Downloads 428
22568 The Effective Use of the Network in the Distributed Storage

Authors: Mamouni Mohammed Dhiya Eddine

Abstract:

This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.

Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface

Procedia PDF Downloads 205
22567 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 213
22566 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 60
22565 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 128
22564 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer

Authors: Yufen Qin

Abstract:

Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.

Keywords: language model, natural language processing, prompt, text sentiment transfer

Procedia PDF Downloads 60
22563 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 236
22562 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 102
22561 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 135
22560 Barrier to Implementing Public-Private Mix Approach for Tuberculosis Case Management in Nepal

Authors: R. K. Yadav, S. Baral, H. R. Paudel, R. Basnet

Abstract:

The Public-Private Mix (PPM) approach is a strategic initiative that involves engaging all private and public healthcare providers in the fight against tuberculosis using international healthcare standards. For tuberculosis control in Nepal, the PPM approach could be a milestone. This study aimed to explore the barriers to a public-private mix approach in the management of tuberculosis cases in Nepal. A total of 20 respondents participated in the study. Barriers to PPM were identified in the following three themes: 1) Obstacles related to TB case detection, 2) Obstacles related to patients, and 3) Obstacles related to the healthcare system. PPM implementation was challenged by following subthemes that included staff turnover, low private sector participation in workshops, a lack of training, poor recording and reporting, insufficient joint monitoring and supervision, poor financial benefit, lack of coordination and collaboration, and non-supportive TB-related policies and strategies. The study concludes that numerous barriers exist in the way of effective implementation of the PPM approach, including TB cases detection barriers such as knowledge of TB diagnosis and treatment, HW attitude, workload, patient-related barriers such as knowledge of TB, self-medication practice, stigma and discrimination, financial status, and health system-related barriers such as staff turnover and poor engagement of the private sector in workshops, training, recording, and re-evaluation. Government stakeholders must work together with private sector stakeholders to perform joint monitoring and supervision. Private practitioners should receive training and orientation, and presumptive TB patients should be given adequate time and counseling as well as motivation to visit a government health facility.

Keywords: barrier, tuberculosis, case finding, PPM, nepal

Procedia PDF Downloads 91
22559 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 354
22558 The Link Between Knowledge Management, Organizational Learning and Collective Competence

Authors: Amira Khelil, Habib Affes

Abstract:

The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.

Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities

Procedia PDF Downloads 487
22557 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM

Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.

Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method

Procedia PDF Downloads 387
22556 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison

Authors: Laurent Thiry, Michel Hassenforder

Abstract:

This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.

Keywords: data transformation, functional programming, information server, optimization

Procedia PDF Downloads 145
22555 Reliability Assessment of Various Empirical Formulas for Prediction of Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model

Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan

Abstract:

In this study, a comprehensive scouring model has been developed in order to evaluate the accuracy of various empirical relationships which were suggested for prediction of scour hole depth in plunge pools by Martins, Mason, Chian and Veronese. For this reason, scour hole depths caused by free falling jets from a flip bucket to a plunge pool were investigated. In this study various discharges, angles, scouring times, etc. have been considered. The final results demonstrated that the all mentioned empirical formulas, except Mason formula, were reasonably agreement with the experimental data.

Keywords: scour hole depth, plunge pool, physical model, reliability assessment

Procedia PDF Downloads 516
22554 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 637
22553 Modified Model for UV-Laser Corneal Ablation

Authors: Salah Hassab Elnaby, Omnia Hamdy, Aziza Ahmed Hassan, Salwa Abdelkawi, Ibrahim Abdelhalim

Abstract:

Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion.

Keywords: UV lasers, mathematical model, corneal ablation, photochemical ablation

Procedia PDF Downloads 64
22552 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 153
22551 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 430