Search results for: learning difficulty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7924

Search results for: learning difficulty

3724 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 85
3723 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 143
3722 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 86
3721 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)

Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare

Abstract:

During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.

Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS

Procedia PDF Downloads 168
3720 Improving the Quality of Higher Education for Students with Disability in Universities of Pakistan

Authors: Nasir Sulman

Abstract:

In Pakistan, the inclusion of persons with disabilities in higher education institutions has significantly been increased with every passing year and anyone can observe a sizeable number of these students in each faculty. The study executes to conduct a baseline survey for measuring faculty understanding about the special needs, experiences of students with disabilities and support provided by university administration in order to teach these students effectively. The researcher has used mixed methods and the University of Karachi was selected through non-probability-based sampling method. This university is one of the largest universities in Pakistan where more than 40,000 students have been enrolled. Data was gathered through a questionnaire and focused group discussion from three stakeholders including students with disabilities, faculty members and members of the university administration. The key findings show that students with disabilities experience a number of problems related to accommodating their special needs. However, the most encouraging factors identified are the attitude, support, and motivation they received from various faculty members and university administration. On the basis of the findings of the study the researcher has prepared a faculty guidebook and established a ‘Model Learning Assistance Centre for Students with Disabilities’ in the Department of Special Education, University of Karachi. Both these efforts will be helpful for improving the support services for students with disabilities to strengthen the existing laws, policies, and practices in institutions of higher education.

Keywords: persons with disabilities, higher education, learning assistance center, faculty guidebook

Procedia PDF Downloads 153
3719 Understanding Trauma Informed Pedagogy in On-Line Education during Turbulent Times: A Mixed Methods Study in a Canadian Social Work Context

Authors: Colleen McMillan, Alice Schmidt-Hanbidge, Beth Archer-Kuhn, Heather Boynton, Judith Hughes

Abstract:

It is well known that social work students enter the profession with higher scores of adverse childhood experiences (ACE). Add to that the fact that COVID-19 has forced higher education institutions to shift to online teaching and learning, where students, faculty and field educators in social work education have reported increased stressors as well as posing challenges in developing relationships with students and being able to identify mental health challenges including those related to trauma. This multi-institutional project included three Canadian post-secondary institutions at five sites (the University of Waterloo, the University of Calgary and the University of Manitoba) and partners; Desire To Learn (D2L), The Centre for Teaching Excellence at the University of Waterloo and the Taylor Institute for Teaching and Learning. A sequential mixed method research design was used. Survey data was collected from students, faculty and field education staff from the 3 universities using the Qualtrics Insight Platform, followed by virtual focus group data with students to provide greater clarity to the quantitative data. Survey data was analyzed using SPSS software, while focus group data was transcribed verbatim and organized with N-Vivo 12. Thematic analysis used line-by-line coding and constant comparative methods within and across focus groups. The following three objectives of the study were achieved: 1) Establish a Canadian baseline on trauma informed pedagogy and student experiences of trauma informed teaching in the online higher education environment during a pandemic; 2) Identify and document educator and student experiences of online learning regarding the ability to process trauma experiences; and, 3) Transfer the findings into a trauma informed pedagogical model for Social Work as a first step toward developing a universal trauma informed teaching model. The trauma informed pedagogy model would be presented in relation to the study findings.

Keywords: trauma informed pedagogy, higher education, social work, mental health

Procedia PDF Downloads 93
3718 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications

Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh

Abstract:

Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.

Keywords: peatrics, tracheostomy, ICU, tracheostoma

Procedia PDF Downloads 266
3717 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 178
3716 talk2all: A Revolutionary Tool for International Medical Tourism

Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury

Abstract:

Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.

Keywords: language translation, communication, machine learning, medical tourism

Procedia PDF Downloads 215
3715 Evaluation Study of Easily Identification of Tactile Symbol on Body Soap Bottle

Authors: K. Doi, T. Nishimura, H. Fujimoto, Y. Hoshikawa, T. Wada

Abstract:

Japanese industrial standard (JIS) association established one JIS (JIS S 0021) regarding packaging accessible design for people with visual impairments and elderly people in 2000. Recently, tactile symbol on shampoo bottle has been known as one of package accessible design and more effectively used. However, it has been said that people with visual impairment have been not been in trouble with difficulty of identifying body soap bottle between three bottles such as body soap bottle, shampoo bottle, and conditioner bottle. Japanese low vision association asked JIS association to solve this problem. JIS association and Japan cosmetic industry association constituted one review team for solving the problem. The review team asked our research team to make a proposal regarding new tactile symbol on body soap bottle. We conducted user survey and maker survey regarding tactile symbol on body soap bottle with easily identification. Seven test tactile symbol marks were elected in our proposed tactile symbols. In this study, we evaluate easily identification of tactile symbol on body soap bottle. Six visual impaired subjects were participated in our experiment. These subjects were asked to identify body soap bottle between three bottles such as body soap bottle, shampoo bottle, and conditioner bottle. The test tactile symbol on body soap were presented in random order. The test tactile symbols were produced by use of our originally developed 3D raised equipment. From our study, test tactile symbol marks with easily identification were made a short list of our proposed tactile symbols. This knowledge will be helpful in revision of ISO 11156.

Keywords: tactile symbol, easily identification, body soap, people with visual impairments

Procedia PDF Downloads 317
3714 Analysis of Engagement Methods in the College Classroom Post Pandemic

Authors: Marsha D. Loda

Abstract:

College enrollment is declining and generation Z, today’s college students, are struggling. Before the pandemic, researchers characterized this generational cohort as unique. Gen Z has been called the most achievement-oriented generation, as they enjoy greater economic status, are more racially and ethnically diverse, and better educated than any other generation. However, they are also the most likely generation to suffer from depression and anxiety. Gen Z has grown up largely with usually well-intentioned but overprotective parents who inadvertently kept them from learning life skills, likely impacting their ability to cope with and to effectively manage challenges. The unprecedented challenges resulting from the pandemic up ended their world and left them emotionally reeling. One of the ramifications of this for higher education is how to reengage current Gen Z students in the classroom. This research presents qualitative findings from 24 single-spaced pages of verbatim comments from college students. Research questions concerned what helps them learn and what they abhor, as well as how to engage them with the university outside of the classroom to aid in retention. Students leave little doubt about what they want to experience in the classroom. In order of mention, students want discussion, to engage with questions, to hear how a topic relates to real life and the real world, to feel connections with the professor and fellow students, and to have an opportunity to give their opinions. They prefer a classroom that involves conversation, with interesting topics and active learning. “professor talks instead of lecturing” “professor builds a connection with the classroom” “I am engaged because it feels like a respectful conversation” Similarly, students are direct about what they dislike in a classroom. In order of frequency, students dislike teachers unenthusiastically reading word or word from notes or presentations, repeating the text without adding examples, or addressing how to apply the information. “All lecture. I can read the book myself” “Not taught how to apply the skill or lesson” “Lectures the entire time. Lesson goes in one ear and out the other.” Pertaining to engagement outside the classroom, Gen Z challenges higher education to step outside the box. They don’t want to just hear from professionals in their field, they want to meet and interact with them. Perhaps because of their dependence on technology and pandemic isolation, they seem to reach out for assistance in forming social bonds. “I believe fun and social events are the best way to connect with students and get them involved. Cookouts, raffles, socials, or networking events would all most likely appeal to many students”. “Events… even if they aren’t directly related to learning. Maybe like movie nights… doing meet ups at restaurants”. Qualitative research suggests strategy. This research is rife with strategic implications to improve learning, increase engagement and reduce drop-out rates among Generation Z higher education students. It also compliments existing research on student engagement. With college enrollment declining by some 1.3 million students over the last two years, this research is both timely and important.

Keywords: college enrollment, generation Z, higher education, pandemic, student engagement

Procedia PDF Downloads 108
3713 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line

Authors: Albert Suryaprawira

Abstract:

The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.

Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement

Procedia PDF Downloads 147
3712 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon

Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira

Abstract:

Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.

Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning

Procedia PDF Downloads 68
3711 Educational Experience and the Investigation Results: Creation of New Healthy Products

Authors: G. Espinosa Garza, I. Loera, N. Antonyan

Abstract:

In the last decades, teaching in particular engineering subjects is going through a significative problem. A quick evaluation of the entrepreneurial surroundings makes it more difficult for students to identify the course contents with real situations related with their future professions. Proposing teaching through challenges or problem-based projects, and real-life situations is turning into an important challenge for any university-level educator. The objective of this work is to present the educational experience and the investigation results taken through the Project Viability course, done by a group of professors and students from the Technologic of Monterrey. Currently, in Mexico, the orange peels are considered a dispose and they are not being utilized as an alternative to create subproducts. However, there is a great opportunity in its use as a raw material with the goal to originate the waste from the local citric firms or business. The project challenge consisted in the development of edible products from the orange peel with the intention to generate new healthy products. With this project, apart from the obtainment of the original results, the accomplishment consisted in creating a learning atmosphere, where students together with the professors were able to plan, evaluate, and implement the project related with the creative, innovative, and sustainable processes with the goal to apply it in the development of local solutions. In the present article, the pedagogic methodologies that allowed to carry out this project will be discussed.

Keywords: engineering subjects, learning project, orange peel, sustainable process

Procedia PDF Downloads 290
3710 Effectiveness of Gamified Simulators in the Health Sector

Authors: Nuno Biga

Abstract:

The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.

Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness

Procedia PDF Downloads 20
3709 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 392
3708 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 172
3707 Flood Inundation Mapping at Wuseta River, East Gojjam Zone, Amhara Regional State, Ethiopia

Authors: Arega Mulu

Abstract:

Flood is a usual phenomenon that will continue to be a leading risk as extensive as societies living and effort in flood-disposed areas. It happens when the size of rainwater in a stream surpasses the volume of the canal. In Ethiopia, municipal overflow events are suitable for severe difficulty in current years. This overflow is mainly related to poorly planned city drainage schemes and land use design. Collective with it, the absence of detailed flood levels, the absence of an early caution scheme and systematized flood catastrophe alleviation actions at countrywide and local levels further raise the gravity of the problem. Hence, this study produces flood inundation maps in the Wuseta River using HEC-GeoRAS and HEC-RAS models. The flooded areas along the Wuseta River have been plotted based on different return periods. The highest flows for various return periods were assessed using the HEC-RAS model, GIS for spatial data processing, and HEC-GeoRAS for interfacing among HEC-RAS and GIS. The areas along the Wuseta River simulated to be flooded for 5, 10, 25, 50, and 100-year return periods. For a 100-year return period flood frequency, the maximum flood depth was 2.26m, and the maximum width was 0.3km on each riverside. This maximum Depth of flood was extended from near to the journey from the university to Debre Markos Town. Most of the area was affected near the Wuseta market to Abaykunu new bridge, and a small portion was affected from Abaykunu to the road crossing from Addis Ababa to Debre Markos Town. The outcome of this study will help the concerned bodies frame and advance policies according to the existing flood risk in the area.

Keywords: flood innundation, wuseta river, HEC-HMS, HEC-RAS

Procedia PDF Downloads 13
3706 Experiences of Students with SLD at University: A Case Study

Authors: Lorna Martha Dreyer

Abstract:

Consistent with the changing paradigm on the rights of people with disabilities and in pursuit of social justice, there is internationally an increase in students with disabilities enrolling at Higher Education Institutions (HEIs). This trend challenges HEI’s to transform and attain Education for All (EFA) as a global imperative. However, while physical and sensory disabilities are observable, students with specific learning disabilities (SLD) do not present with any visible indications and are often referred to as “hidden” or “invisible” disabilities. This qualitative case study aimed to illuminate the experiences of students with SLDs at a South African university. The research was, therefore, guided by Vygotsky’s social-cultural theory (SCT). This research was conducted within a basic qualitative research methodology embedded in an interpretive paradigm. Data was collected through an online background survey and semi-structured interviews. Thematic qualitative content analysis was used to analyse the collected data systematically. From a social justice perspective, the major findings suggest that there are several factors that impede equal education for students with SLDs at university. Most participants in this small-scale study experienced a lack of acknowledgment and support from lecturers. They reported valuing the support of family and friends more than that of lecturers. It is concluded that lecturers need to be reflective of their pedagogical practices if authentic inclusion is to be realised.

Keywords: higher education, inclusive education, pedagogy, social-cultural theory, specific learning disabilities

Procedia PDF Downloads 149
3705 Automation of AAA Game Development using AI and Procedural Generation

Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 33
3704 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 18
3703 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 121
3702 Exploring the Association between Personality Traits and Adolescent Wellbeing in Online Education: A Systematic Review

Authors: Rashmi Motwani, Ritu Raj

Abstract:

The emergence of online educational environments has changed the way adolescents learn, which has benefits and drawbacks for their development. This review has as its goal the examination of how personality traits and adolescents’ well-being are associated in the setting of online education. This review analyses the effects of a variety of personality traits on the mental, emotional, and social health of online school-going adolescents by looking at a wide range of previous research. This research explores the mechanisms that mediate or regulate the connection between one's personality traits and well-being in an online educational environment. The elements can be broken down into two categories: technological, like internet availability and digital literacy, and social, including social support, peer interaction, and teacher-student connections. To improve the well-being of adolescents in online learning environments, it is essential to understand factors that moderate the effects of interventions and support systems. This review concludes by emphasising the complex nature of the association between individual differences in personality and the success of online students aged 13 to 18. This review contributes to the development of evidence-based strategies for promoting positive mental health and overall well-being among adolescents engaged in online educational settings by shedding light on the impact of personality traits on various dimensions of well-being and by identifying the mediating or moderating factors. Educators, governments, and parents can use the findings of this review to create an online learning environment that is safe and well-being for adolescents.

Keywords: personality traits, adolescent, wellbeing, online education

Procedia PDF Downloads 54
3701 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 59
3700 Protection of Human Rights in Polish Centres for Foreigners – in the Context of the European Human Rights System

Authors: Oktawia Braniewicz

Abstract:

The phenomenon of emigration and migration increasingly affects Poland's borders as well. For this reason, it is necessary to examine the level of protection of Human Rights in Polish Centres for Foreigners. The field study covered 11 centers for Foreigners in the provinces Kujawsko-Pomorskie Region, Lubelskie Region, Lodzkie Region, Mazowieckie Region and Podlaskie Region. Photographic documentation of living and social conditions, conversations with center employees and refugees allow to show a comprehensive picture of the situation prevailing in Centres for Foreigners. The object of reflection will be, in particular, the standards resulting from art. 8 and 13 of the Convention for the Protection of Human Rights and Fundamental Freedoms and article 2 of Protocol No. 1 to the Convention for the Protection of Human Rights and Fundamental Freedoms. The degree of realization of the right to education and the right to respect for family and private life will be shown. Issues related to learning the Polish language, access to a professional translator and psychological help will also be approximated. Learning Polish is not obligatory, which causes problems with assimilation and integration with other members of the new community. In centers for foreigners, there are no translators - a translator from an external company is rented if necessary. The waiting time for an interpreter makes the refugees feel anxious, unable to communicate with the employees of the centers (this is a situation in which the refugees do not know either English, Polish or Russian). Psychologist's help is available on designated days of the week. There is no separate specialist in child psychology, which is a serious problem.

Keywords: human rights, Polish centres, foreigners, fundamental freedoms

Procedia PDF Downloads 136
3699 Translation and Adaptation of Computer Assisted ASPIRA Smoking Prevention Program in Romania

Authors: Z. Abram, V. Nadasan, J. Balint, J. L. Ferencz

Abstract:

Introduction: Online smoking prevention programs became popular in the last time. In order to extend the use of such programs, existing applications can be adapted and translated in the native languages of the target groups. It is the first time that in Romania such a software was implemented. Our goal was to provide a computer-aided intervention with attractive content targeting high school students who are familiar with information and communication technology. Material and methods: ASPIRA is the Romanian/Hungarian adapted version of a smoking prevention program created in USA. Prior to apply the questionnaire and ASPIRA online program which contains five modules that include tests, videos and interactive games, the program was tested in some IT laboratories on a group of schoolchildren and students. The pilot study questionnaires were completed considering the opinions of young people and the functionality of the software. Results: Above 90% of participants reported a good or very good impression about the ASPIRA program. Only a small minority found that the program included some parts which were too long or reported the existence of any technical problems regarding the functionality of the software. 76% of the participants had little or very little difficulty in understanding the messages presented by the English speaking characters. Only 7.5% of the participants thought that the program included content that was not appropriate for the local culture. Conclusions: The vast majority of students reported favorite impressions about ASPIRA online program. High school students and boys were more critical. Language and cultural barriers did not have the potential to reduce in a significant manner the effectiveness of the tested program.

Keywords: smoking prevention, ASPIRA online program, youth opinions, language/cultural barriers

Procedia PDF Downloads 264
3698 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 137
3697 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: broadcasting contents, scripts, text similarity, topic model

Procedia PDF Downloads 324
3696 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 128
3695 Techniques to Teach Reading at Pre-Reading Stage

Authors: Anh Duong

Abstract:

The three-phase reading lesson has been put forth around the world as the new and innovative framework which is corresponding to the learner-centered trend in English language teaching and learning. Among three stages, pre-reading attracts many teachers’ and researchers’ attention for its vital role in preparing students with knowledge and interest in reading class. The researcher’s desire to exemplify effectiveness of activities prior to text reading has provoked the current study. Three main aspects were investigated in this paper, i.e. teachers’ and student’s perception of pre-reading stage, teachers’ exploitation of pre-reading techniques and teachers’ recommendation of effective pre-reading activities. Aiming at pre-reading techniques for first-year students at English Department, this study involved 200 fresh-men and 10 teachers from Division 1 to participate in the questionnaire survey. Interviews with the teachers and classroom observation were employed as a tool to take an insight into the responses gained from the early instrument. After a detailed procedure of analyzing data, the researcher discovered that thanks to the participants’ acclamation of pre-reading stage, this phase was frequently conducted by the surveyed teachers. Despite the fact that pre-reading activities apparently put a hand in motivating students to read and creating a joyful learning atmosphere, they did not fulfill another function as supporting students’ reading comprehension. Therefore, a range of techniques and notices when preparing and conducting pre-reading phase was detected from the interviewed teachers. The findings assisted the researcher to propose some related pedagogical implications concerning teachers’ source of pre-reading techniques, variations of suggested activities and first-year reading syllabus.

Keywords: pre-reading stage, pre-reading techniques, teaching reading, language teaching

Procedia PDF Downloads 488