Search results for: heat consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6036

Search results for: heat consumption

1836 Literature Review on the Antibacterial Effects of Salvia officinalis L.

Authors: Benguerine Zohra, Merzak Siham, Pr. Chelghoum

Abstract:

Introduction: The widespread production and consumption of antibiotics have raised significant concerns due to various adverse effects and the development of bacterial resistance. This increasing resistance to currently available antibiotics necessitates the search for new antibacterial agents. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. This study aims to provide an overview of the antibacterial effects of Salvia officinalis (sage), a plant native to the Middle East and Mediterranean regions. Materials and Methods: This review was conducted by searching studies in databases such as PubMed, Scopus, JSTOR, and SpringerLink. The search terms were “Salvia officinalis L.” and “antibacterial effects.” Only studies that met our inclusion criteria (in English, focusing on the antibacterial effects of Salvia officinalis L., and primarily dated from 2012 to 2023) were considered for further review. Results and Discussion: The initial search strategy identified approximately 78 references, of which only 13 articles were included in this review. The synthesis of these articles revealed that multiple data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis demands further studies on other useful and unknown properties of this multipurpose plant.

Keywords: salvia officinalis, literature review, antibacterial., botany

Procedia PDF Downloads 14
1835 Intimate Partner Offenders and Prevalent Affective-Cognitive Functioning: A Study with Inmates

Authors: Alexandra Serra, Nadia Torrão, Rui G. Serôdio, José A. Lima

Abstract:

The present study aimed to evaluate the incidence and the prevalence of domestic violence legitimatory beliefs, emotional regulation difficulties and, early maladaptive schemas regarding intimidate partner violence in a sample of 50 Portuguese inmates. As expected, results show high levels of legitimatory beliefs, significant difficulties of emotional regulation and a set of high levels of early maladaptive schemas that clearly compromise the inmates affective-cognitive functioning. The most prevalent set of maladaptive schemas are associated with depression, anxiety, hostility, reduced ability to empathize and, dependence on the approval of others, which, combined, may trigger aggressive responses towards the intimate’s partner. Being victimized in their childhood and having committing murder are not differentiating factors on the measures we analyzed, but alcohol consumption may be associated with an intensification of domestic violence legitimatory beliefs. In the discussion of our findings, we compare the pattern of the psychosocial measures we used with the equivalent results obtained with convicted individuals that attend a community compulsory program, specifically designed for domestic violence perpetrators. We also highlight the importance of implementing specialized interventions in prison settings focusing on an evidence-based-practice.

Keywords: affective-cognitive functioning, intimate partner offenders, psychological research with inmates

Procedia PDF Downloads 412
1834 Breast Cancer and BRCA Gene: A Study on Genetic and Environmental Interaction

Authors: Abhishikta Ghosh Roy

Abstract:

Breast cancer is the most common malignancy among women globally, including India. Human breast cancer results from the genetic and environmental interaction. The present study attempts to understand the molecular heterogeneity of BRCA1 and BRCA2 genes, as well as to understand the association of various lifestyle and reproductive variables for the Breast Cancer risk. The study was conducted amongst 110 patients and 128 controls with total DNA sequencing of flanking and coding regions of BRCA1 BRCA2 genes that revealed ten Single Nucleotide Polymorphisms (SNPs) (6 novels). The controls selected for the study were age, sex and ethnic group matched. After written and informed consent biological samples were collected from the subjects. After detailed molecular analysis, significant (p < 0.005) molecular heterogeneity is revealed in terms of SNPs in BRCA1 (4 Exonic & 1 Intronic) and BRCA2 (2exonic and 3 Intronic) genes. The augmentation study investigated significant (p < 0.05) association with positive family history, early age at menarche, irregular menstrual periods, menopause, prolong contraceptive use, nulliparity, history of abortions, consumption of alcohol and smoking for breast cancer risk. To the best of authors knowledge, this study is the first of its kind, envisaged that the identification of the SNPs and modification of the lifestyle factors might aid to minimize the risk among the Bengalee Hindu females.

Keywords: breast cancer, BRCA, lifestyle, India

Procedia PDF Downloads 109
1833 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 134
1832 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 176
1831 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 311
1830 Food and Agricultural Waste Management for Sustainable Agriculture

Authors: Shubhangi Salokhe

Abstract:

Agriculture encompasses crop and livestock production, forestry, and fisheries for food and non-food products. Farmers combine land, water, commercial inputs, labor, and their management skills into practices and systems that produce food and fibre. Harvesting of agricultural produce is either followed by the processing of fresh produce or storage for later consumption. All these activities result in a vast generation of waste in terms of crop residue or food waste. So, a large amount of agricultural waste is produced every year. Waste arising from food and agricultural sectors has the potential for vast applications. So, agricultural waste management is an essential component of sustainable agriculture. The major portion of the waste comes from the residues of crops on farms, food processing, livestock, aquaculture, and agro-industry waste. Therefore, management of these agricultural wastes is an important task, and it requires robust strategic planning. It can contribute to three pillars of sustainable agriculture development. It protects the environment (environmental pillar), enhances the livelihoods of farmers (economic pillar), and can contribute to increasing the sustainability of the agricultural sector (social pillar). This paper addresses the essential technological aspects, possible solutions, and sound policy concerns to accomplish long-term way out of agriculture waste management and to minimize the negative impact of waste on the environment. The author has developed a sustainable agriculture waste management model for improving the sustainability of agriculture.

Keywords: agriculture, development, management, waste

Procedia PDF Downloads 40
1829 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca), and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit

Authors: Nneka N. Uchegbu, Charles N. Ishiwu

Abstract:

The nutritional composition and hypoglycaemic effect of crackers produced from a blend of sprouted pigeon pea, unripe plantain, and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p < 0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour can be recommended for the diabetics and those who are sceptical about the disease.

Keywords: crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain

Procedia PDF Downloads 433
1828 Comparing Groundwater Fluoride Level with WHO Guidelines and Classifying At-Risk Age Groups; Based on Health Risk Assessment

Authors: Samaneh Abolli, Kamyar Yaghmaeian, Ali Arab Aradani, Mahmood Alimohammadi

Abstract:

The main route of fluoride uptake is drinking water. Fluoride absorption in the acceptable range (0.5-1.5 mg L-¹) is suitable for the body, but it's too much consumption can have irreversible health effects. To compare fluoride concentration with the WHO guidelines, 112 water samples were taken from groundwater aquifers in 22 villages of Garmsar County, the central part of Iran, during 2018 to 2019.Fluoride concentration was measured by the SPANDS method, and its non-carcinogenic impacts were calculated using EDI and HQ. The statistical population was divided into four categories of infant, children, teenagers, and adults. Linear regression and Spearman rank correlation coefficient tests were used to investigate the relationships between the well's depth and fluoride concentration in the water samples. The annual mean concentrations of fluoride in 2018 and2019 were 0.75 and 0.64 mg -¹ and, the fluoride mean concentration in the samples classifying the cold and hot seasons of the studied years was 0.709 and 0.689 mg L-¹, respectively. The amount of fluoride in 27% of the samples in both years was less than the acceptable minimum (0.5 mg L-¹). Also, 11% of the samples in2018 (6 samples) had fluoride levels higher than 1.5 mg L-¹. The HQ showed that the children were vulnerable; teenagers and adults were in the next ranks, respectively. Statistical tests showed a reverse and significant correlation (R2 = 0.02, < 0.0001) between well depth and fluoride content. The border between the usefulness/harmfulness of fluoride is very narrow and requires extensive studies.

Keywords: fluoride, groundwater, health risk assessment, hazard quotient, Garmsar

Procedia PDF Downloads 67
1827 Process of Dimensioning Small Type Annular Combustors

Authors: Saleh B. Mohamed, Mohamed H. Elhsnawi, Mesbah M. Salem

Abstract:

Current and future applications of small gas turbine engines annular type combustors have requirements presenting difficult disputes to the combustor designer. Reduced cost and fuel consumption and improved durability and reliability as well as higher temperatures and pressures for such application are forecast. Coupled with these performance requirements, irrespective of the engine size, is the demand to control the pollutant emissions, namely the oxides of nitrogen, carbon monoxide, smoke and unburned hydrocarbons. These technical and environmental challenges have made the design of small size combustion system a very hard task. Thus, the main target of this work is to generalize a calculation method of annular type combustors for small gas turbine engines that enables to understand the fundamental concepts of the coupled processes and to identify the proper procedure that formulates and solves the problems in combustion fields in as much simplified and accurate manner as possible. The combustion chamber in task is designed with central vaporizing unit and to deliver 516.3 KW of power. The geometrical constraints are 142 mm & 140 mm overall length and casing diameter, respectively, while the airflow rate is 0.8 kg/sec and the fuel flow rate is 0.012 kg/sec. The relevant design equations are programmed by using MathCAD language for ease and speed up of the calculation process.

Keywords: design of gas turbine, small engine design, annular type combustors, mechanical engineering

Procedia PDF Downloads 404
1826 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 33
1825 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 101
1824 Microstructure and Mechanical Properties of A201 Alloys with Additions of Si

Authors: Suzan Abd El Majid, Menachem Bamberger, Alexander Katsman

Abstract:

Two Al-4 wt. % Cu based alloys, A201 and A201+Si were investigated in the as-cast, solution treated and aged conditions. The addition of Si was used to improve the castability of the basic alloy. The all investigated alloys in the as-cast condition contained a eutectic structure along grain boundaries (GBs) with the composition Al-50at. %Cu that was found by HRSEM EDS. Addition of Si refined the grain structure and changed the amount of the eutectic regions, their size and shape. Additionally, the A201+Si microstructure contained Si rods and small amount of Al6Mn4Cu3Fe2Si-phase. Solution treatment (ST) at 550°C for ~ 20 hours resulted in a slight dissolution of the eutectic structure in the A201 alloy while substantial dissolution and change of the eutectic composition was detected in the A201+Si alloy. After ST, the A201alloy contained θ-Al2Cu, Al5Cu2Mn3 and Al9Cu7Mn3(Fe) phases associated to the GBs, while the ST A201+Si alloy contained θ-Al2Cu, Al6Mn4Cu3(Fe,Si) and Si94Mn3Al2Cu phases. Precipitation hardening during aging at 170°C was investigated for both alloys. The microhardness of the ST A201alloy increased during aging and reached the maximum value ~ 140 HV after 2 h of aging. Initial microhardness of the ST A201+Si alloy was distinctly higher than one of the ST A201 alloy, but it decreased during the first hour of aging, then increased and reached the same maximum value ~ 140 HV after ~ 4 h of aging. It was concluded that the Si addition influenced the precipitation sequence and slowed down the age hardening process. The Si induced grain refining and evolution of the eutectic structure during the heat treatments applied are discussed.

Keywords: A201 alloys, castability, microstructure, micro-hardness

Procedia PDF Downloads 285
1823 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 80
1822 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 255
1821 The Effect of Mindfulness on Eating Enjoyment and Behavior in Preschool and Elementary Children: A Field Experiment across Four Schools

Authors: Phan Hong, David Lishner, Matthew Hanson

Abstract:

Sixty-five children across four school research sites participated in the present experiment, which was designed to examine whether mindfulness promotes eating enjoyment and diverse eating behaviors in preschool- and early elementary-age children. Children, ages 3-9 years old, were randomly assigned to a 4-week mindfulness intervention condition or a 4-week exposure, control condition. Each week for four days, children received one of four different foods (celery, cauliflower, kidney beans, or garbanzo beans). Children either received instructions to mindfully engage with the food or were given the food and allowed to eat without mindfulness prompts from the researchers. Following the eating exercise, they recorded the amount eaten and rated their enjoyment level. Across all sessions, researchers modeled eating behaviors for the children by eating all the offered food. Results suggested that a brief mindfulness intervention promoted more diverse eating behaviors and more overall food consumption of typically not preferred and unfamiliar foods (celery, cauliflower, and garbanzo beans), compared with an exposure, control condition in preschool children and elementary-age children. However, food enjoyment ratings did not significantly differ between the two conditions for any of the foods. Implications of the finding for addressing eating behavior of young children are considered.

Keywords: children, control trial, eating behavior, eating enjoyment, mindfulness, schools

Procedia PDF Downloads 221
1820 GC and GCxGC-MS Composition of Volatile Compounds from Cuminum cyminum and Carum carvi by Using Techniques Assisted by Microwaves

Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe

Abstract:

The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.

Keywords: microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS

Procedia PDF Downloads 254
1819 Deficits in Belongingness and Elevated Perceptions of Burdensomeness: How Dark Traits Drive Problematic Drinking

Authors: Taylin L. Peoples, Lauren Lewis, Sebastian G. Risco, Devin Mills

Abstract:

The impact of problematic drinking (PD) on the health of U.S. adults continues to be a concerning issue. Additionally, the U.S. Surgeon General recently highlighted the isolation epidemic, bringing attention to the significant and detrimental impact of loneliness. Research has found PD to be associated with deficits in feeling connection towards others. This suggests that one consequence of the isolation epidemic is the greater severity of PD. Further, PD has long been associated with three dark personality traits (i.e., narcissism, Machiavellianism, psychopathy), which may be explained by interpersonal factors but has yet to be examined. Therefore, the present study assessed the extent to which thwarted belongingness (TB) and perceived burdensomeness (PB) explain the relationship between dark personality traits and PD. Data was collected from 606 US adults reporting alcohol consumption. The participants completed the Interpersonal Needs Questionnaire, the Short Dark Triad scale, and the Alcohol Use Disorders Identification Test. Results from a path analysis supported the hypothesis that dark traits are associated with more severe PD through both PB and TB. The present results underscore the role of connection to others, as defined by TB and PB, in facilitating the relationship between dark personality traits and PD. Future research is needed in this area to develop preventative strategies and policies as well as clinical interventions. In sum, the findings offer a novel perspective on the intersection of personality traits, PB and TB, and PD.

Keywords: problem drinking, personality, dark traits, dark traid, thwarted belonginess, perceived burdensomeness

Procedia PDF Downloads 21
1818 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 79
1817 Experimental Quantification and Modeling of Dissolved Gas during Hydrate Crystallization: CO₂ Hydrate Case

Authors: Amokrane Boufares, Elise Provost, Veronique Osswald, Pascal Clain, Anthony Delahaye, Laurence Fournaison, Didier Dalmazzone

Abstract:

Gas hydrates have long been considered as problematic for flow assurance in natural gas and oil transportation. On the other hand, they are now seen as future promising materials for various applications (i.e. desalination of seawater, natural gas and hydrogen storage, gas sequestration, gas combustion separation and cold storage and transport). Nonetheless, a better understanding of the crystallization mechanism of gas hydrate and of their formation kinetics is still needed for a better comprehension and control of the process. To that purpose, measuring the real-time evolution of the dissolved gas concentration in the aqueous phase during hydrate formation is required. In this work, CO₂ hydrates were formed in a stirred reactor equipped with an Attenuated Total Reflection (ATR) probe coupled to a Fourier Transform InfraRed (FTIR) spectroscopy analyzer. A method was first developed to continuously measure in-situ the CO₂ concentration in the liquid phase during solubilization, supersaturation, hydrate crystallization and dissociation steps. Thereafter, the measured concentration data were compared with those of equilibrium concentrations. It was observed that the equilibrium is instantly reached in the liquid phase due to the fast consumption of dissolved gas by the hydrate crystallization. Consequently, it was shown that hydrate crystallization kinetics is limited by the gas transfer at the gas-liquid interface. Finally, we noticed that the liquid-hydrate equilibrium during the hydrate crystallization is governed by the temperature of the experiment under the tested conditions.

Keywords: gas hydrate, dissolved gas, crystallization, infrared spectroscopy

Procedia PDF Downloads 276
1816 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 68
1815 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design

Procedia PDF Downloads 381
1814 Agricultural Water Consumption Estimation in the Helmand Basin

Authors: Mahdi Akbari, Ali Torabi Haghighi

Abstract:

Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream.

Keywords: Afghanistan-Iran transboundary Basin, Iran-Afghanistan water treaty, water use, lake desiccation

Procedia PDF Downloads 125
1813 Challenges and Opportunities in Computing Logistics Cost in E-Commerce Supply Chain

Authors: Pramod Ghadge, Swadesh Srivastava

Abstract:

Revenue generation of a logistics company depends on how the logistics cost of a shipment is calculated. Logistics cost of a shipment is a function of distance & speed of the shipment travel in a particular network, its volumetric size and dead weight. Logistics billing is based mainly on the consumption of the scarce resource (space or weight carrying capacity of a carrier). Shipment’s size or deadweight is a function of product and packaging weight, dimensions and flexibility. Hence, to arrive at a standard methodology to compute accurate cost to bill the customer, the interplay among above mentioned physical attributes along with their measurement plays a key role. This becomes even more complex for an ecommerce company, like Flipkart, which caters to shipments from both warehouse and marketplace in an unorganized non-standard market like India. In this paper, we will explore various methodologies to define a standard way of billing the non-standard shipments across a wide range of size, shape and deadweight. Those will be, usage of historical volumetric/dead weight data to arrive at a factor which can be used to compute the logistics cost of a shipment, also calculating the real/contour volume of a shipment to address the problem of irregular shipment shapes which cannot be solved by conventional bounding box volume measurements. We will also discuss certain key business practices and operational quality considerations needed to bring standardization and drive appropriate ownership in the ecosystem.

Keywords: contour volume, logistics, real volume, volumetric weight

Procedia PDF Downloads 259
1812 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment

Authors: Khamdan Cahyari, Pratikno Hidayat

Abstract:

Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.

Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion

Procedia PDF Downloads 570
1811 Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana

Authors: Atheer Al-Maqbali, Mohammed Al-Rizeiqi, Pankaj Pathare

Abstract:

There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products.

Keywords: banana, drying, oman, quality, thickness, hardness, color

Procedia PDF Downloads 88
1810 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 210
1809 Effect of Diindolylmethane on BBN-Induced Bladder Carcinogenesis in Rats

Authors: Sundaresan Sivapatham, B. Prabhu

Abstract:

Cancer results from a multistage, multi-mechanism carcinogenesis process that involves mutagenic, cell death and epigenetic mechanisms, during the three distinguishable but closely allied stages: initiation, promotion, and progression. Chemoprevention is promising in the realm of cancer prevention and it has been shown to reduce the risk of development of carcinoma in highly susceptible individuals such as those with known genetic mutations or high level of risk factors. The present study is aimed at the need of early detection of bladder cancer in order to improve performance in the treatment of this disease. Consumption of certain natural products like DIM is associated with a reduction in cancer incidence in humans. The study showed the protective effects of Diindolylmethane in N-Butyl-N-(4-hydroxybutyl) nitrosamine treated rats. Results of the study had shown the changes in the tumor markers, biomarkers and histopathological alterations in experimental rats when compared to control rats. The protective effects of DIM were shown from the results of cell proliferation, apoptotic markers and histopathological findings when compared with experimental control animals. Hence, our results speculate that the tumor markers, apoptotic markers, histopathological changes and cell proliferation index measured as PCNA serves as an indicator suggestive of protective effects of DIM in BBN induced urinary bladder carcinogenesis.

Keywords: bladder cancer, N-Butyl-N-(4-hydroxybutyl) nitrosamine, diindolylmethane, histopathology

Procedia PDF Downloads 338
1808 Performance Evaluation of Adsorption Refrigerating Systems

Authors: Nadia Allouache, Omar Rahli

Abstract:

Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.

Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.

Procedia PDF Downloads 75
1807 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)

Authors: Mohsen Akhlaghi, Tahereh Ebrahimi

Abstract:

Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.

Keywords: multi-criteria decision, sustainable development, topsis, water supply

Procedia PDF Downloads 58