Search results for: green infrastructure network
4200 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process
Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud
Abstract:
The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,Keywords: electrocoagulation, green process, experimental design, optimization
Procedia PDF Downloads 1014199 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas
Abstract:
The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm
Procedia PDF Downloads 1024198 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system
Procedia PDF Downloads 3044197 A Survey of the Constraints Associated with the Mechanized Tillage of the Fadama Using Animal Drawn Tillage Implements
Authors: L. G. Abubakar, A. M. El-Okene, M. L. Suleiman, Z. Abubakar
Abstract:
Fadama tillage in Northern Nigeria and in Zaria in particular, has relied on manual labour and corresponding implements which are associated with drudgery, loss of human energy due to bending and reduced productivity. A survey was conducted to study the present tillage practices and determine the constraints associated with the use of animal traction for mechanized tillage of the Fadama. The study revealed that Fadama farmers (mostly aged between 36 and 60 years) use manual labour with tools like small hoe, big hoe and rake to till during the dry season (October of one year to March of the next year). Most of the Fadama farmers believe that tillage operations like ploughing, harrowing and basin making are very important tillage activities in the preparation of seedbeds for crops like green maize, sugarcane and vegetables, but are constrained to using animal traction for tillage due to beliefs like unsuitability of the workbulls and corresponding implements, Fadama soil being too heavy for the system and the non-attainment of deep tillage required by crops like sugarcane and potato. These were affirmed by local blacksmiths of animal traction implements and agricultural officers of government establishments.Keywords: snimal traction, Fadama, tillage implements, workbulls
Procedia PDF Downloads 5124196 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 4624195 Prospect and Challenges of Public Bicycle Sharing System in Indian Cities
Authors: Anil Kumar
Abstract:
Public Bicycle System (PBS), generally known as Public Bicycle Share System or Bike-Share, is a service provided to the everyday commuters in which several cycles are available on the shared system. The concept of PBS is new to the people of India and requires more study in the fields of essential requirements, major infrastructural requirements, social acceptability, and various challenges. In various Indian cities, MRTS, BRTS, Monorail, and other modes of transport have been adopted for the main haul of transport. These modes take more time, space and are also expensive to implement. At the same time, the PBS system is more economical and takes less time to implement. The main benefit of the PBS system is that it is more environmentally friendly. PBS is being implemented in many Indian cities for public use, but various challenges are associated with this. The study aims to determine what are the basic infrastructural requirements for PBS in India, as well as to determine to what extent a Public Bike Sharing System can provide a quality and efficient service to passengers as a primary method of transportation.Keywords: public bicycle sharing system, sustainable transport, infrastructure, smart city
Procedia PDF Downloads 1974194 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 1324193 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation
Authors: Abul Bashar
Abstract:
The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.Keywords: cloud computing, modeling framework, performance evaluation, simulation tools
Procedia PDF Downloads 5064192 An Analysis of How Students Perceive Their Self-Efficacy in Online Speaking Classes
Authors: Heny Hartono, Cecilia Titiek Murniati
Abstract:
The pandemic has given teachers and students no other choice but having full online learning. In such an emergency situation as the time of the covid-19 pandemic, the application of LMS (Learner Management System) in higher education is the most reasonable solution for students and teachers. In fact, the online learning requires all elements of a higher education systems, including the human resources, infrastructure, and supporting systems such as the application, server, and stable internet connection. The readiness of the higher education institution in preparing the online system may secure those who are involved in the online learning process. It may also result in students’ self-efficacy in online learning. This research aimed to investigate how students perceive their self-efficacy in online English learning, especially in speaking classes which is considered as a productive language skill. This research collects qualitative data with narrative inquiry involving 25 students of speaking classes as the respondents. The results of this study show that students perceive their self-efficacy in speaking online classes as not very high.Keywords: self-efficacy, online learning, speaking class, college students, e-learning
Procedia PDF Downloads 1034191 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering
Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif
Abstract:
In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network
Procedia PDF Downloads 2414190 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 3184189 Investigation of Steady State Infiltration Rate for Different Head Condition
Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra
Abstract:
This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.Keywords: infiltration rate, moisture content, grass type, organic content
Procedia PDF Downloads 2954188 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 4934187 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border
Authors: Fengqing Li, Petra Schneider
Abstract:
Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict
Procedia PDF Downloads 1224186 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2574185 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers
Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko
Abstract:
The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers
Procedia PDF Downloads 7164184 Synthesis and Characterization of Nanocellulose Based Bio-Composites
Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S
Abstract:
Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.Keywords: nanocellulose, biocomposite, CNF, bamboo
Procedia PDF Downloads 904183 Distribution of Laurencia caspica, Enteromorpha intestinalis and Cladophora glomerata along the Southern Parts of the Caspian Sea and Their Relation with Environmental Factors
Authors: Neda Mehdipour, Mohammad Hasan Gerami, Reza Rahnama, Ali Hamzehpour, Hanieh Nemati
Abstract:
Laurencia caspica (red macroalgae) Enteromorpha intestinalis and Cladophora glomerata (green macroalgae) are three major macroalgae that grow along the southern coasts of the Caspian Sea. We investigated spatial and temporal variation of these three macroalgal species on hard substrates and their relation with environmental factors in 2014. Sampling was done seasonally from spring to winter 2014 from eight sites. Results indicated that of these three species had heterogeneity distribution along southern parts of the Caspian Sea. In addition, C. glomerata was dominant taxa in all stations and had maximum contribution in dissimilarities between sampling sites. According to BIO-ENV salinity, pH and Silicate were the best subset variables for explaining changes in the abundance over time of the hard-substrates macroalgae fauna under study. However, the position of species in Redundancy Analysis (RDA) plot revealed that L. caspica associated with temperature, E. intestinalis with pH and C. glomerata associated with phosphate and silicate.Keywords: macroalgae, distribution, environmental factors, Caspian Sea
Procedia PDF Downloads 3904182 Linearization and Process Standardization of Construction Design Engineering Workflows
Authors: T. R. Sreeram, S. Natarajan, C. Jena
Abstract:
Civil engineering construction is a network of tasks involving varying degree of complexity and streamlining, and standardization is the only way to establish a systemic approach to design. While there are off the shelf tools such as AutoCAD that play a role in the realization of design, the repeatable process in which these tools are deployed often is ignored. The present paper addresses this challenge through a sustainable design process and effective standardizations at all stages in the design workflow. The same is demonstrated through a case study in the context of construction, and further improvement points are highlighted.Keywords: syste, lean, value stream, process improvement
Procedia PDF Downloads 1264181 Assessment of Quality of Drinking Water in Residential Houses of Kuwait by Using GIS Method
Authors: Huda Aljabi
Abstract:
The existence of heavy metals similar to cadmium, arsenic, lead and mercury in the drinking water be able to be a threat to public health. The amount of the substances of these heavy metals in drinking water has expected importance. The National Primary Drinking Water Regulations have set limits for the concentrations of these elements in drinking water because of their toxicity. Furthermore, bromate shaped during the disinfection of drinking water by Ozonation can also be a health hazard. The Paper proposed here will concentrate on the compilation of all available data and information on the presence of trace metals and bromate in the drinking water at residential houses distributed over different areas in Kuwait. New data will also be collected through a sampling of drinking water at some of the residential houses present in different areas of Kuwait and their analysis for the contents of trace metals and bromate. The collected data will be presented on maps showing the distribution of these metals and bromate in the drinking water of Kuwait. Correlation among different chemical parameters will also be investigated using the GRAPHER software. This will help both the Ministry of Electricity and Water (MEW) and the Ministry of Health (MOH) in taking corrective measures and also in planning the infrastructure activities for the future.Keywords: bromate, ozonation, GIS, heavy metals
Procedia PDF Downloads 1844180 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 894179 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products
Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 4074178 Risk Assessment on Construction Management with “Fuzzy Logy“
Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi
Abstract:
Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.Keywords: fuzzy logy, risk, prioritization, assessment
Procedia PDF Downloads 5984177 Tram Track Deterioration Modeling
Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi
Abstract:
Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.Keywords: deterioration modeling, asset management, railway, tram
Procedia PDF Downloads 3854176 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 1834175 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network
Authors: Ashima Anurag Sharma
Abstract:
Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 5314174 Road Safety and Accident Prevention in Third World Countries: A Case Study of NH-7 in India
Authors: Siddegowda, Y. A. Sathish, G. Krishnegowda, T. M. Mohan Kumar
Abstract:
Road accidents are a human tragedy. They involve high human suffering and monetary costs in terms of untimely death, injuries and social problems. India had earned the dubious distinction of having more number of fatalities due to road accidents in the world. Road safety is emerging as a major social concern around the world especially in India because of infrastructure project works. A case study was taken on NH – 07 which connects to various major cities and industries. The study shows that major cases of fatalities are due to bus, trucks and high speed vehicles. The main causes of accidents are due to high density, non-restriction of speed, use of mobile phones, lack of board signs on road parking, visibility restriction, improper geometric design, road use characteristics, environmental aspects, social aspects etc. Data analysis and preventive measures are enlightened in this paper.Keywords: accidents, environmental aspects, fatalities, geometric design, road user characteristics
Procedia PDF Downloads 2564173 Improved Throttled Load Balancing Approach for Cloud Environment
Authors: Sushant Singh, Anurag Jain, Seema Sabharwal
Abstract:
Cloud computing is advancing with a rapid speed. Already, it has been adopted by a huge set of users. Easy to use and anywhere access like potential of cloud computing has made it more attractive relative to other technologies. This has resulted in reduction of deployment cost on user side. It has also allowed the big companies to sell their infrastructure to recover the installation cost for the organization. Roots of cloud computing have extended from Grid computing. Along with the inherited characteristics of its predecessor technologies it has also adopted the loopholes present in those technologies. Some of the loopholes are identified and corrected recently, but still some are yet to be rectified. Two major areas where still scope of improvement exists are security and performance. The proposed work is devoted to performance enhancement for the user of the existing cloud system by improving the basic throttled mapping approach between task and resources. The improved procedure has been tested using the cloud analyst simulator. The results are compared with the original and it has been found that proposed work is one step ahead of existing techniques.Keywords: cloud analyst, cloud computing, load balancing, throttled
Procedia PDF Downloads 2534172 Start Talking in an E-Learning Environment: Building and Sustaining Communities of Practice
Authors: Melissa C. LaDuke
Abstract:
The purpose of this literature review was to identify the use of online communities of practice (CoPs) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.Keywords: community of practice, knowledge sharing, social interaction, online course design, new literacies
Procedia PDF Downloads 974171 Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process: A Green Approach for Mass Production
Authors: Delele Worku Ayele, Bing-Joe Hwang
Abstract:
A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.Keywords: average life time, CdSe QDs, microwave (MW), mass production oleic acid, Na2SeSO3
Procedia PDF Downloads 320