Search results for: concrete large panel wall
6327 The Role of Institutional Quality and Institutional Quality Distance on Trade: The Case of Agricultural Trade within the Southern African Development Community Region
Authors: Kgolagano Mpejane
Abstract:
The study applies a New Institutional Economics (NIE) analytical framework to trade in developing economies by assessing the impacts of institutional quality and institutional quality distance on agricultural trade using a panel data of 15 Southern African Development Community (SADC) countries from the years 1991-2010. The issue of institutions on agricultural trade has not been accorded the necessary attention in the literature, particularly in developing economies. Therefore, the paper empirically tests the gravity model of international trade by measuring the impact of political, economic and legal institutions on intra SADC agricultural trade. The gravity model is noted for its exploratory power and strong theoretical foundation. However, the model has statistical shortcomings in dealing with zero trade values and heteroscedasticity residuals leading to biased results. Therefore, this study employs a two stage Heckman selection model with a Probit equation to estimate the influence of institutions on agricultural trade. The selection stages include the inverse Mills ratio to account for the variable bias of the gravity model. The Heckman model accounts for zero trade values and is robust in the presence of heteroscedasticity. The empirical results of the study support the NIE theory premise that institutions matter in trade. The results demonstrate that institutions determine bilateral agricultural trade on different margins with political institutions having positive and significant influence on bilateral agricultural trade flows within the SADC region. Legal and economic institutions have significant and negative effects on SADC trade. Furthermore, the results of this study confirm that institutional quality distance influences agricultural trade. Legal and political institutional distance have a positive and significant influence on bilateral agricultural trade while the influence of economic, institutional quality is negative and insignificant. The results imply that nontrade barriers, in the form of institutional quality and institutional quality distance, are significant factors limiting intra SADC agricultural trade. Therefore, gains from intra SADC agricultural trade can be attained through the improvement of institutions within the region.Keywords: agricultural trade, institutions, gravity model, SADC
Procedia PDF Downloads 1556326 Characteristics of Photoluminescence in Resonant Quasiperiodic Double-period Quantum Wells
Authors: C. H. Chang, R. Z. Qiu, C. W. Tsao, Y. H. Cheng, C. H. Chen, W. J. Hsueh
Abstract:
Characteristics of photoluminescence (PL) in a resonant quasi-periodic double-period quantum wells (DPQW) are demonstrated. The maximum PL intensity in the DPQW is remarkably greater than that in a traditional periodic QW (PQW) under the Bragg or anti-Bragg conditions. The optimal PL spectrum in the DPQW has an asymmetrical form instead of the symmetrical form in the PQW. Moreover, there are two large values of PL intensity in the DPQW, which also differs from the PQW.Keywords: Photoluminescence, quantum wells, quasiperiodic structure
Procedia PDF Downloads 7246325 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition
Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu
Abstract:
Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal
Procedia PDF Downloads 2036324 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed
Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand
Abstract:
Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.Keywords: experimental, fuel bed, grate firing, wood combustion
Procedia PDF Downloads 3296323 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 826322 Challenges over Two Semantic Repositories - OWLIM and AllegroGraph
Authors: Paria Tajabor, Azin Azarbani
Abstract:
The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise.Keywords: OWLIM, allegrograph, RDF, reasoning, semantic repository, semantic-web, SPARQL, ontology, query
Procedia PDF Downloads 2676321 Clinch Process Simulation Using Diffuse Elements
Authors: Benzegaou Ali, Brani Benabderrahmane
Abstract:
This work describes a numerical study of the TOX–clinching process using diffuse elements. A computer code baptized SEMA "Static Explicit Method Analysis" is developed to simulate the clinch joining process. The FE code is based on an Updated Lagrangian scheme. The used resolution method is based on an explicit static approach. The integration of the elasto-plastic behavior law is realized with an algorithm of Simo and Taylor. The tools are represented by plane facets.Keywords: diffuse elements, numerical simulation, clinching, contact, large deformation
Procedia PDF Downloads 3696320 Transformation of Hexagonal Cells into Auxetic in Core Honeycomb Furniture Panels
Authors: Jerzy Smardzewski
Abstract:
Structures with negative Poisson's ratios are called auxetic. They are characterized by better mechanical properties than conventional structures, especially shear strength, the ability to better absorb energy and increase strength during bending, especially in sandwich panels. Commonly used paper cores of cellular boards are made of hexagonal cells. With isotropic facings, these cells provide isotropic properties of the entire furniture board. Shelves made of such panels with a thickness similar to standard chipboards do not provide adequate stiffness and strength of the furniture. However, it is possible to transform the shape of hexagonal cells into polyhedral auxetic cells that improve the mechanical properties of the core. The work aimed to transform the hexagonal cells of the paper core into auxetic cells and determine their basic mechanical properties. Using numerical methods, it was decided to design the most favorable proportions of cells distinguished by the lowest Poisson's ratio and the highest modulus of linear elasticity. Standard cores for cellular boards commonly used to produce 34 mm thick furniture boards were used for the tests. Poisson's ratios, bending strength, and linear elasticity moduli were determined for such cores and boards. Then, the cells were transformed into auxetic structures, and analogous cellular boards were made for which mechanical properties were determined. The results of numerical simulations for which the variable parameters were the dimensions of the cell walls, wall inclination angles, and relative cell density were presented in the further part of the paper. Experimental tests and numerical simulations showed the beneficial effect of auxeticization on the mechanical quality of furniture panels. They allowed for the selection of the optimal shape of auxetic core cells.Keywords: auxetics, honeycomb, panels, simulation, experiment
Procedia PDF Downloads 186319 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment
Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen
Abstract:
Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram
Procedia PDF Downloads 5156318 Preliminary Short-Term Results of a Population of Patients Treated with Mitraclip Therapy: One Center Experience
Authors: Rossana Taravella, Gilberto M. Cellura, Giuseppe Cirrincione, Salvatore Asciutto, Marco Caruso, Massimo Benedetto, Renato Ciofalo, Giuliana Pace, Salvatore Novo
Abstract:
Objectives: This retrospective analysis sought to evaluate 1-month outcomes and therapy effectiveness of a population of patients treated with MitraClip therapy. We describe in this article the preliminary results of primary effectiveness endpoint. Background: Percutaneous Mitral Repair is being developed to treat severe mitral regurgitation (MR), with increasing real-world cases of functional MR (FMR). In the EVEREST (Endovascular Valve Edge-to-Edge Repair Study)II trial, the percutaneous device showed superior safety but less reduction in MR at 1year. 4-year outcomes from EVEREST II trial showed no difference in the prevalence of moderate-severe and severe MR or mortality at 4years between surgical mitral repair and percutaneous approach. Methods: We analysed retrospectively collected data from one center experience in Italy enrolled from January 2011 to December 2016. The study included 62 patients [mean age 74±11years, 43 men (69%)] with MR of at least grade3+. Most of the patients had functional MR, were in New York Heart Association (NYHA) functional class III or IV, with a large portion (78%) of mild-to-moderate Tricuspid Regurgitation (TR). One or more clips were implanted in 67 procedures (62 patients). Results and Conclusions: Severity of MR was reduced in all successfully treated patients,54(90%) were discharged with MR≤2+ (primary effectiveness endpoint). Clinical 1-month follow-up data showed an improvement in NYHA functional class (42 patients (70%) in NYHA class I-II). 60 of 62 (97 %) successfully treated patients were free from death and mitral valve surgery at 1-month follow-up. MitraClip therapy reduces functional MR with acute MR reduction to <2+ in the great majority of patients, with a large freedom from death, surgery or recurrent MR in a great portion of patients.Keywords: MitraClip, mitral regurgitation, heart valves, catheter-based therapy
Procedia PDF Downloads 2996317 Evaluation of Oligocene-Miocene Clay from the Northern Part of Palmyra Region (Syria) for Industrial Ceramic Applications
Authors: Abdul Salam Turkmani
Abstract:
Clay of the northern Palmyra region is one of the most important raw materials used in the Syrian ceramics industry. This study is focused on the evaluation of various laboratory analyses such as chemical analysis (XRF), mineral X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and semi-industrial tests carried out on samples collected on two representative locations of the upper Oligocene in AlMkamen valley (MK) and lower Miocene in AlZukara valley (ZR) of the northern part of Palmyra, Syria. Chemical results classify the (MK) and (ZR) clays as semi-plastic red clay slightly carbonate and (eliminate probable) illite-chlorite clays with a very fine particle size distribution. Content of SiO₂ between 46.28-57.66%, Al2O3 13.81-25.2%, Fe₂O₃ 3.47-11.58%, CaO 1.15-7.19%, Na₂O+K₂O varied between 3.34-3.71%. Based on clay chemical composition and iron and carbonate content, these deposits can be considered as red firing clays. Their mineralogical composition is mainly represented by illite, kaolinite and quartz, and accessories minerals such as calcite, feldspar, phillipsite, and goethite. The results of the DTA test confirm the presence of gypsum and quartz phases in (MK) clay. Ceramic testing shows good green and dry bending strength values, which varied between 9-14 kg/cm², at 1160°C to 1180°C. Water absorption moves from 14.6 % at 1120°C to 2.2% at 1180°C to 1.6% at 1200°C. Breaking load after firing changes from 400 to 590 kg/cm². At 1200°C (MK), clay reaches perfect vitrification. After firing, the color of the clay changes from orange-hazel to red-brown at 1180°C. Technological results confirmed the suitability of the studied clays to produce floor and wall ceramic tiles. Using one of the two types of clay into the ceramic body or both types together gave satisfactory industrial results.Keywords: ceramic, clay, industry , Palmyra
Procedia PDF Downloads 1996316 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation
Procedia PDF Downloads 3106315 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru
Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar
Abstract:
Nowadays, heritage building information modeling (HBIM) is considered an efficient tool to represent and manage information of cultural heritage (CH). The basis of this tool relies on a 3D model generally obtained from a cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired level of development (LOD), level of information (LOI), grade of generation (GOG), as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit, and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings, and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills, and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models families, respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI, and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources since the BIM software used has a free student license.Keywords: cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit
Procedia PDF Downloads 1486314 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4206313 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation
Authors: Huanru Wang, Jianzhun Jiang
Abstract:
At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts
Procedia PDF Downloads 1246312 Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper
Authors: O. E. Akay, E. Güzel, M. T. Özcan
Abstract:
The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine.Keywords: kinematic simulation, four bar linkage, harvest mechanization, pepper harvest
Procedia PDF Downloads 3516311 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 1216310 Consideration of Uncertainty in Engineering
Authors: A. Mohammadi, M. Moghimi, S. Mohammadi
Abstract:
Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method
Procedia PDF Downloads 4216309 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 2306308 Rupture Termination of the 1950 C. E. Earthquake and Recurrent Interval of Great Earthquake in North Eastern Himalaya, India
Authors: Rao Singh Priyanka, Jayangondaperumal R.
Abstract:
The Himalayan active fault has the potential to generate great earthquakes in the future, posing a biggest existential threat to humans in the Himalayan and adjacent region. Quantitative evaluation of accumulated and released interseismic strain is crucial to assess the magnitude and spatio-temporal variability of future great earthquakes along the Himalayan arc. To mitigate the destruction and hazards associated with such earthquakes, it is important to understand their recurrence cycle. The eastern Himalayan and Indo-Burman plate boundary systems offers an oblique convergence across two orthogonal plate boundaries, resulting in a zone of distributed deformation both within and away from the plate boundary and clockwise rotation of fault-bounded blocks. This seismically active region has poorly documented historical archive of the past large earthquakes. Thus, paleoseismologicalstudies confirm the surface rupture evidences of the great continental earthquakes (Mw ≥ 8) along the Himalayan Frontal Thrust (HFT), which along with the Geodetic studies, collectively provide the crucial information to understand and assess the seismic potential. These investigations reveal the rupture of 3/4th of the HFT during great events since medieval time but with debatable opinions for the timing of events due to unclear evidences, ignorance of transverse segment boundaries, and lack of detail studies. Recent paleoseismological investigations in the eastern Himalaya and Mishmi ranges confirms the primary surface ruptures of the 1950 C.E. great earthquake (M>8). However, a seismic gap exists between the 1714 C.E. and 1950 C.E. Assam earthquakes that did not slip since 1697 C.E. event. Unlike the latest large blind 2015 Gorkha earthquake (Mw 7.8), the 1950 C.E. event is not triggered by a large event of 1947 C.E. that occurred near the western edge of the great upper Assam event. Moreover, the western segment of the eastern Himalayadid not witness any surface breaking earthquake along the HFT for over the past 300 yr. The frontal fault excavations reveal that during the 1950 earthquake, ~3.1-m-high scarp along the HFT was formed due to the co-seismic slip of 5.5 ± 0.7 m at Pasighat in the Eastern Himalaya and a 10-m-high-scarp at a Kamlang Nagar along the Mishmi Thrust in the Eastern Himalayan Syntaxis is an outcome of a dip-slip displacement of 24.6 ± 4.6 m along a 25 ± 5°E dipping fault. This event has ruptured along the two orthogonal fault systems in the form of oblique thrust fault mechanism. Approx. 130 km west of Pasighat site, the Himebasti village has witnessed two earthquakes, the historical 1697 Sadiya earthquake, and the 1950 event, with a cumulative dip-slip displacement of 15.32 ± 4.69 m. At Niglok site, Arunachal Pradesh, a cumulative slip of ~12.82 m during at least three events since pre 19585 B.P. has produced ~6.2-m high scarp while the youngest scarp of ~2.4-m height has been produced during 1697 C.E. The site preserves two deformational events along the eastern HFT, providing an idea of last serial ruptures at an interval of ~850 yearswhile the successive surface rupturing earthquakes lacks in the Mishmi Range to estimate the recurrence cycle.Keywords: paleoseismology, surface rupture, recurrence interval, Eastern Himalaya
Procedia PDF Downloads 866307 Sustainable Integrated Waste Management System
Authors: Lidia Lombardi
Abstract:
Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste
Procedia PDF Downloads 646306 Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications
Authors: Chunyang Miao, Bingxin Li, Shanglong Ning, Christopher J. B. Ford
Abstract:
While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc.Keywords: molecular electronics, Coulomb blokade, electron-phonon coupling, self-assembled monolayer
Procedia PDF Downloads 676305 Resilient Analysis as an Alternative to Conventional Seismic Analysis Methods for the Maintenance of a Socioeconomical Functionality of Structures
Authors: Sara Muhammad Elqudah, Vigh László Gergely
Abstract:
Catastrophic events, such as earthquakes, are sudden, short, and devastating, threatening lives, demolishing futures, and causing huge economic losses. Current seismic analyses and design standards are based on life safety levels where only some residual strength and stiffness are left in the structure leaving it beyond economical repair. Consequently, it has become necessary to introduce and implement the concept of resilient design. Resilient design is about designing for ductility over time by resisting, absorbing, and recovering from the effects of a hazard in an appropriate and efficient time manner while maintaining the functionality of the structure in the aftermath of the incident. Resilient analysis is mainly based on the fragility, vulnerability, and functionality curves where eventually a resilience index is generated from these curves, and the higher this index is, the better is the performance of the structure. In this paper, seismic performances of a simple two story reinforced concrete building, located in a moderate seismic region, has been evaluated using the conventional seismic analyses methods, which are the linear static analysis, the response spectrum analysis, and the pushover analysis, and the generated results of these analyses methods are compared to those of the resilient analysis. Results highlight that the resilience analysis was the most convenient method in generating a more ductile and functional structure from a socio-economic perspective, in comparison to the standard seismic analysis methods.Keywords: conventional analysis methods, functionality, resilient analysis, seismic performance
Procedia PDF Downloads 1216304 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 3056303 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1796302 The Judge Citizens Have in Mind, Comparative Lessons about the Rule of Law Matrix
Authors: Daniela Piana
Abstract:
This work casts light on what lies underneath the rule of law. In order to do so it unfolds the arguments in three main steps. The first one is a pars destruens: the mainstreaming scholarship on judicial independence and judicial accountability is questioned under the large amount of data we have at our disposal (this step is accomplished in the first two paragraphs). The second step is the reframe of the concept of the rule of law and the consequent rise of a hidden dimension, which has been so far largely underexplored: responsiveness. The third step consists into offering the readers empirical support and drawing thereby consequences in terms of policy design and citizens engagement into the rule of law implementation (these two steps are accomplished in the third paragraph).Keywords: rule of law, accountability, trust, citizens
Procedia PDF Downloads 2516301 Effect of Wind Braces to Earthquake Resistance of Steel Structures
Authors: H. Gokdemir
Abstract:
All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads
Procedia PDF Downloads 4746300 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey
Authors: Mahdiyeh Zafaranchi
Abstract:
With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters
Procedia PDF Downloads 1156299 Changes to Populations Might Aid the Spread Antibiotic Resistance in the Environment
Authors: Yasir Bashawri, Vincent N. Chigor James McDonald, Merfyn Williams, Davey Jones, A. Prysor Williams
Abstract:
Resistance to antibiotics has become a threat to public health. As a result of their misuse and overuse, bacteria have become resistant to many common antibiotics. Βeta lactam (β-lactam) antibiotics are one of the most significant classes of antimicrobials in providing therapeutic benefits for the treatment of bacterial infections in both human and veterinary medicine, for approximately 60% of all antibiotics are used. In particular, some Enterobacteriaceae produce Extend Spectrum Beta Lactamases (ESBLs) that enable them to some break down multi-groups of antibiotics. CTX-M enzymes have rapidly become the most important ESBLs, with increases in mainly CTX-M 15 in many countries during the last decade. Global travel by intercontinental medical ‘tourists’, migrant employees and overseas students could theoretically be a risk factor for spreading antibiotic resistance genes in different parts of the world. Bangor city, North Wales, is subject to sudden demographic changes due to a large proportion (>25%) of the population being students, most of which arrive over a space of days. This makes it a suitable location to study the impacts of large demographic change on the presence of ESBLs. The aim of this study is to monitor the presence of ESBLs in Escherichia coli and faecal coliform bacteria isolated from Bangor wastewater treatment plant, before, during and after the arrival week of students to Bangor University. Over a five-week period, water samples were collected twice a week, from the influent, primary sedimentation tank, aeration tank and the final effluent. Isolation and counts for Escherichia coli and other faecal coliforms were done on selective agar (primary UTI agar). ESBL presence will be confirmed by phenotypic and genotypic methods. Sampling at all points of the tertiary treatment stages will indicate the effectiveness of wastewater treatment in reducing the spread of ESBLs genes. The study will yield valuable information to help tackle a problem which many regard to be the one of the biggest threats to modern-day society.Keywords: extended spectrum β-lactamase, enterobacteriaceae, international travel, wastewater treatment plant
Procedia PDF Downloads 3796298 Seismic Integrity Determination of Dams in Urban Areas
Authors: J. M. Mayoral, M. Anaya
Abstract:
The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.Keywords: risk, seismic, soil-structure interaction, urban dams
Procedia PDF Downloads 124