Search results for: underground water sources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11989

Search results for: underground water sources

7819 Microbial Corrosion on Oil and Gas Facilities: A Case Study of Oil and Gas Facilities in the Niger-Delta

Authors: Frederick Otite Ighovojah

Abstract:

Corrosion in the oil and gas industries is one of the most common causes of failure. Such failure includes leaks in above-ground storage tanks (AGST). The involvement of microorganisms in the corrosion process in AGST systems is often ignored, and this outlines the need to investigate the effect of microbial corrosion in oil and gas facilities. This study's methodology comprised gathering generated water samples from a nearby AGST oil facility that was operating, which were then equally divided into two batch reactors, 1 and 2. Each batch reactor was filled with five prepared X60 coupons using sterilized forceps. To provide nutrients for the microorganisms in batch reactor 1 during the test period, 2g of NPK 15- 15-15 fertilizer was added on a weekly basis. To kill the microorganisms and significantly lower their concentration in the generated water, 5ml of dissolved ozone (a biocide) with a 0.5ppm concentration was added to batch reactor 2. The weight loss measurement (WLM) was used to evaluate for corrosion. Coupons were removed from each batch reactor, and weight loss was measured at every interval of 336 hrs for 2016 hrs. The overall results obtained indicated that coupons from the batch 1 reactor showed a higher corrosion rate and higher mass loss, and this was due to the metabolic production of an aggressive compound in the medium.

Keywords: AGST, microbial corrosion, reactor, X60 steel

Procedia PDF Downloads 78
7818 Multi-Functional Metal Oxides as Gas Sensors, Photo-Catalysts and Bactericides

Authors: Koyar Rane

Abstract:

Nano- to submicron size particles of narrow particle size distribution of semi-conducting TiO₂, ZnO, NiO, CuO, Fe₂O₃ have been synthesized by novel hydrazine method and tested for their gas sensing, photocatalytic and bactericidal activities and the behavior found to be enhanced when the oxides in the thin film forms, that obtained in a specially built spray pyrolysis reactor. Hydrazine method is novel in the sense, say, the UV absorption edge of the white pigment grade wide band gap (~3.2eV) TiO₂ and ZnO shifted to the visible region turning into yellowish particles, indicating modification occurring the band structure. The absorption in the visible region makes these oxides visible light sensitive photocatalysis in degrading pollutants, especially the organic dyes which otherwise increase the chemical oxygen demand of the drinking water, enabling the process feasible not under the harsh energetic UV radiation regime. The electromagnetic radiations on irradiation produce electron-hole pairs Semiconductor + hν → e⁻ + h⁺ The electron-hole pairs thus produced form Reactive Oxygen Species, ROS, on the surface of the semiconductors, O₂(adsorbed)+e⁻ → O₂• - superoxide ion OH-(surface)+h⁺ →•OH - Hydroxyl radical The ROS attack the organic material and micro-organisms. Our antibacterial studies indicate the metal oxides control the Biological Oxygen Demand (BOD) of drinking water which had beyond the safe level normally found in the municipal supply. Metal oxides in the thin film form show overall enhanced properties and the films are reusable. The results of the photodegradation and antibactericidal studies are discussed. Gas sensing studies too have been done to find the versatility of the multifunctional metal oxides.

Keywords: hydrazine method, visible light sensitive, photo-degradation of dyes, water/airborne pollutant

Procedia PDF Downloads 161
7817 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 160
7816 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 69
7815 Geospatial Techniques for Impact Assessment of Canal Rehabilitation Program in Sindh, Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi, Muhammad Arslan Hafeez

Abstract:

Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system of the world comprising Indus River and its tributaries, canals, distributaries, and watercourses. A big challenge faced by IBIS is transmission losses through seepage and leaks that account to 41 percent of the total water derived from the river and about 40 percent of that is through watercourses. Irrigation system rehabilitation programs in Pakistan are focused on improvement of canal system at the watercourse level (tertiary channels). Under these irrigation system management programs more than 22,800 watercourses have been improved or lined out of 43,000 (12,900 Kilometers) watercourses. The evaluation of the improvement work is required at this stage to testify the success of the programs. In this paper, emerging technologies of GIS and satellite remote sensing are used for impact assessment of watercourse rehabilitation work in Sindh. To evaluate the efficiency of the improved watercourses, few parameters are selected like soil moisture along watercourses, availability of water at tail end and changes in cultivable command areas. Improved watercourses details and maps are acquired from National Program for Improvement of Watercourses (NPIW) and Space and Upper Atmospheric Research Commission (SUPARCO). High resolution satellite images of Google Earth for the year of 2004 to 2013 are used for digitizing command areas. Temporal maps of cultivable command areas show a noticeable increase in the cultivable land served by improved watercourses. Field visits are conducted to validate the results. Interviews with farmers and landowners also reveal their overall satisfaction in terms of availability of water at the tail end and increased crop production.

Keywords: geospatial, impact assessment, watercourses, GIS, remote sensing, seepage, canal lining

Procedia PDF Downloads 345
7814 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 287
7813 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration

Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen

Abstract:

Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.

Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration

Procedia PDF Downloads 26
7812 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 242
7811 Balance of Natural Resources to Manage Land Use Changes in Subosukawonosraten Area

Authors: Sri E. Wati, D. Roswidyatmoko, N. Maslahatun, Gunawan, Andhika B. Taji

Abstract:

Natural resource is the main sources to fulfill human needs. Its utilization must consider not only human prosperity but also sustainability. Balance of natural resources is a tool to manage natural wealth and to control land use change. This tool is needed to organize land use planning as stated on spatial plan in a certain region. Balance of natural resources can be calculated by comparing two-series of natural resource data obtained at different year. In this case, four years data period of land and forest were used (2010 and 2014). Land use data were acquired through satellite image interpretation and field checking. By means of GIS analysis, its result was then assessed with land use plan. It is intended to evaluate whether existing land use is suitable with land use plan. If it is improper, what kind of efforts and policies must be done to overcome the situation. Subosukawonosraten is rapid developed areas in Central Java Province. This region consists of seven regencies/cities which are Sukoharjo Regency, Boyolali Regency, Surakarta City, Karanganyar Regency, Wonogiri Regency, Sragen Regency, and Klaten Regency. This region is regarding to several former areas under Karasidenan Surakarta and their location is adjacent to Surakarta. Balance of forest resources show that width of forest area is not significantly changed. Some land uses within the area are slightly changed. Some rice field areas are converted into settlement (0.03%) whereas water bodies become vacant areas (0.09%). On the other hand, balance of land resources state that there are many land use changes in this region. Width area of rice field decreases 428 hectares and more than 50% of them have been transformed into settlement area and 11.21% is converted into buildings such as factories, hotels, and other infrastructures. It occurs mostly in Sragen, Sukoharjo, and Karanganyar Regency. The results illustrate that land use change in this region is mostly influenced by increasing of population number. Some agricultural lands have been converted into built-up area since demand of settlement, industrial area, and other infrastructures also increases. Unfortunately, recent utilization of more than a half of total area is not appropriate with land use plan declared in spatial planning document. It means, local government shall develop a strict regulation and law enforcement related to any violation in land use management.

Keywords: balance, forest, land, spatial plan

Procedia PDF Downloads 317
7810 Ammonia and Biogenic Amine Production of Fish Spoilage Bacteria: Affected by Olive Leaf, Olive Cake and Black Water

Authors: E. Kuley, M. Durmuş, E. Balikci, G. Ozyurt, Y. Uçar, F. Kuley, F. Ozogul, Y. Ozogul

Abstract:

Ammonia and biogenic amine production of fish spoilage bacteria in sardine infusion decarboxylase broth and antimicrobial effect of olive by products (olive leaf extract:OL, olive cake: OC and black water:BW) was monitored using HPLC method. Fish spoilage bacteria produced all biogenic amine tested, mainly histamine and serotonin. Ammonia was accumulated more than 13.60 mg/L. Histamine production was in range 37.50 mg/L by Ser. liquefaciens and 86.71 mg/L by Ent. cloacae. The highest putrescine and cadaverine production was observed by Ent. cloacae (17.80 vs. 17.69 mg/L). The presence of OL, OC and BW in the broth significantly affected biogenic amine accumulation by bacteria. The antibacterial effect of olive by products depended on bacterial strains. OL and OC resulted in significant inhibition effect on HIS accumulation by bacteria apart from Ser. liquefaciens and Prot. mirabilis. The study result revealed that usefulness of OL and OC to prevent the accumulation of this amine which may affect human health.

Keywords: Antimicrobials, biogenic amine, fish spoilage bacteria, olive-by products

Procedia PDF Downloads 496
7809 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 532
7808 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 139
7807 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: bed topography, FBM, LBM, shallow water, simulations

Procedia PDF Downloads 94
7806 Treatments for Overcoming Dormancy of Leucaena Seeds (Leucaena leucocephala)

Authors: Tiago Valente, Erico Lima, Bruno Deminicis, Andreia Cezario, Wallacy Santos, Fabiane Brito

Abstract:

Introduction: The Leucaena leucocephala known as leucaena is a perennial legume shrub of subtropical regions in which the forage shows favorable characteristics for livestock production. The objective of the study was to evaluate the influence of methods for overcoming dormancy the seeds of Leucaena leucocephala (Lam.). Materials and Methods: The number of germinated seeds was evaluated daily at the germination criterion radicle protrusion (growth, with about 2 cm long, the emerged seedlings of all). After the counting of the number of germinated seeds daily, the following characteristics were evaluated: Step 1: Germination count which represents the cumulative percentage of germinated seeds on the third day after the start of the test (Germ3); Step 2: Percentage of germinated seeds that correspond to the total percentage of seeds that germinate until the a seventh day after start of the test (Germ7); Step 3: Percentage of germinated seeds that correspond to the total percentage of seeds that germinate until the fifteenth day after start of the test (Germ15);Step 4: Germination speed index (GSI), which was calculated with number of germinated seeds to the nth observation; divided by number of days after sowing. Step 5: Total count of seeds do not germinate after 15 days (NGerm).The seed treatments were: (T1) water at 100 ºC/10 min; (T2) water at 100 ºC/1 min; (T3) Acetone (10 min); (T4) Ethyl alcohol (10 minutes); and (T5) intact seeds (control). Data were analyzed using a completely randomized design with eight replications, and it was adopted the Tukey test at 5% significance level. Results and Discussion: The treatment T1, had the highest speed of germination of seeds GSI, differed (P < 0.05). The T5 treatment (control) was the slowest response, between treatments until the seventh day after the beginning of the test (Germ7), with an amount of 20% accumulation of germinated seeds. The worst result of germination it was T5, with 30% of non-germinated seeds after 15 days of sowing. Acknowledgments: IFGoiano and CNPq (Brazil).

Keywords: acetone, boiling water, germination, seed physiology

Procedia PDF Downloads 196
7805 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs

Authors: N. Allouache, O. Rahli

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.

Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs

Procedia PDF Downloads 145
7804 Surveying Coastal Society Perception on Giant Sea Wall Jakarta Development Planning

Authors: Ammar Asfari, Faizah Finur Fithriah, Shighia Ajeng Savitri

Abstract:

Jakarta as the capital city of Indonesia held an important role for the country, that is being the city where central government is located. But its topographic character which categorized as lowland area is causing an ultimate trouble. With average height of 7 meters above the sea level, flood keeps occurring in this city. On the other hand, water exploitation that caused land subsidence and sea-levels increasing by global warming make it even worse. Giant Sea Wall Development is a project created by Jakarta’s government to overcome flood, which is inspired by Saemangeum Dam in South Korea. For further planning, Giant Sea Wall is planned to be water reservoir for Jakarta’s inhabitants. This research’s aim is to fully understand the knowledge and opinion of people living in North Jakarta (Jakarta’s Coastal Area) on Giant Sea Wall development planning using qualitative method analysis with descriptive approach. The result of this research will be one of the determining factors in Giant Sea Wall Jakarta development planning continuance.

Keywords: descriptive approach, Giant Sea Wall Jakarta, qualitative method analysis, society perception

Procedia PDF Downloads 280
7803 The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links

Authors: O. I. Adeniran, M. A. Mogale

Abstract:

Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes.

Keywords: advanced glycation end-products, anti-glycation, cross-link breaking, Sclerocarrya birrea

Procedia PDF Downloads 256
7802 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle

Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye

Abstract:

Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.

Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis

Procedia PDF Downloads 200
7801 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 451
7800 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid

Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov

Abstract:

Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.

Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics

Procedia PDF Downloads 78
7799 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 203
7798 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 208
7797 A Network of Land Forts Built by Bahmani’s in Deccan Region

Authors: Ar.Abhishek Ranka

Abstract:

Cultural landscapes are a part of a nation’s heritage, which represent the exquisite combination of Natural (Ecological) & Built (Architectural) fabric, consisting of many historic gardens, water management system, sustainable planning, and designed framework. The use of landscape and topography with Tangible &Intangible heritage components (forts, temples, tombs, mosques, etc.) are locally, regionally, and nationally significant. The paper speaks about the contribution of Bahmani Sultanate to military architecture in the Deccan region. It is a study of the series of seven land forts as a cultural landscape, which plays an important role in shaping the knowledge systems in the form of typologies of military architecture, water management system, and the administrative setups, which are presently located in the cultural region, Marathwada of the Deccan. Conservation of Culturall and scapeasan approach offers opportunities to better integrate natural and cultural heritage conservation. Conserving of Seven Land forts could act as an inspirational model for other sites.

Keywords: bahmani sultanate, deccan region, land forts, culture landscape, military architecture, tradational knowledge system, architectural conservation

Procedia PDF Downloads 108
7796 The Influence of Bentonite on the Rheology of Geothermal Grouts

Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana

Abstract:

This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.

Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties

Procedia PDF Downloads 119
7795 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices

Authors: Abdeghani Qadem

Abstract:

Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.

Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas

Procedia PDF Downloads 63
7794 Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation

Authors: A. Bayat, R. Bello-Mendoza, D. G. Wareham

Abstract:

Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition.

Keywords: anaerobic digestion, thermophilic, mesophilic, total solids concentration

Procedia PDF Downloads 133
7793 Growth Pattern, Condition Factor and Relative Condition Factor of Twenty Important Demersal Marine Fish Species in Nigerian Coastal Water

Authors: Omogoriola Hannah Omoloye

Abstract:

Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide1. The length – weight relationships (LWRs) is of great importance in fishery assessment2,3. Its importance is pronounced in estimated the average weight at a given length group4 and in assessing the relative well being of a fish population5. Length and weight measurement in conjunction with age data can give information on the stock composition, age at maturity, life span, mortality, growth and production4,5,6,7. In addition, the data on length and weight can also provides important clues to climatic and environmental changes and the change in human consumption practices8,9. However, the size attained by the individual fish may also vary because of variation in food supply, and these in turn may reflect variation in climatic parameters and in the supply of nutrient or in the degree of competition for food. Environment deterioration, for example, may reduce growth rates and will cause a decrease in the average age of the fish. The condition factor and the relative condition factor10 are the quantitative parameters of the well being state of the fish and reflect recent feeding condition of the fish. It is based on the hypothesis that heavier fish of a given length are in better condition11. This factor varies according to influences of physiological factors, fluctuating according to different stages of the development. Condition factor has been used as an index of growth and feeding intensity12. Condition factor decrease with increase in length 12,13 and also influences the reproductive cycle in fish14. The objective here is to determine the length-weight relationships and condition factor for direct use in fishery assessment and for future comparisons between populations of the same species at different locations. To provide quantitative information on the biology of marine fish species trawl from Nigeria coastal water.

Keywords: condition factor, growth pattern, marine fish species, Nigerian Coastal water

Procedia PDF Downloads 414
7792 Anti-cancer Activity of Cassava Leaves (Manihot esculenta Crantz.) Against Colon Cancer (WiDr) Cells in vitro

Authors: Fatma Zuhrotun Nisa, Aprilina Ratriany, Agus Wijanarka

Abstract:

Background: Cassava leaves are widely used by the people of Indonesia as a vegetable and treat various diseases, including anticancer believed as food. However, not much research on the anticancer activity of cassava leaves, especially in colon cancer. Objectives: the aim of this study is to investigate anti-cancer activity of cassava leaves (Manihot esculanta C.) against colon cancer (WiDr) cells in vitro. Methods: effect of crude aqueous extract of leaves of cassava and cassava leaves boiled tested in colon cancer cells widr. Determination of Anticancer uses the MTT method with parameters such as the percentage of deaths. Results: raw cassava leaf water extract gave IC50 of 63.1 mg / ml. While the water extract of boiled cassava leaves gave IC50 of 79.4 mg/ml. However, there is no difference anticancer activity of raw cassava leaves or cancer (p> 0.05). Conclusion: Cassava leaves contain a variety of compounds that have previously been reported to have anticancer activity. Linamarin, β-carotene, vitamin C, and fiber were thought to affect the IC50 cassava leaf extract against colon cancer cells WiDr.

Keywords: boiled cassava leaves, cassava leaves raw, anticancer activity, colon cancer, IC50

Procedia PDF Downloads 544
7791 Catered Lunch Suspected Outbreak in a Garment Factory, Sleman District, Yogyakarta, Indonesia, 2017

Authors: Rieski Prihastuti, Meliana Depo, Trisno A. Wibowo, Misinem

Abstract:

On October 19, 2017, Yogyakarta Islamic Hospital reported 38 garment employees with nausea, vomiting, headache, abdominal pain, and diarrhea after they had lunch on October 18, 2017, to Sleman District Health Office. Objectives of this study were to ensure the outbreak and identify source and route of transmission. Case-control study was conducted to analyze food items that caused the outbreak. A case was defined as a person who got symptoms such as abdominal pain, diarrhea, nausea with/without vomiting, fever, and headache after they had lunch on October 18, 2017. Samples included leftover lunch box, vomit, tap water and drinking water had been sent to the laboratory. Data were analyzed descriptively as frequency table and analyzed by using chi-square in bivariate analysis. All of 196 garment employee was included in this study. The common symptoms of this outbreak were abdominal pain (84.4%), diarrhea (72.8%), nausea (61.6%), headache (52.8%), vomiting (12.8%), and fever (6.4%) with median incubation period 13 hours (range 1-34 hours). Highest attack rate and odds ratio was found in grilled chicken (Attack Rate 58,49%) with Odds Ratio 11,023 (Confidence Interval 95% 1.383 - 87.859; p value 0,005). Almost all samples showed mold, except drinking water. Based on its sign and symptoms, also incubation period, diarrheal Bacillus cereus and Clostridium perfringens were suspected to be the causative agent of the outbreak. Limitation of this study was improper sample handling and no sample of food handler and stools in the food caterer. Outbreak investigation training needed to be given to the hospital worker, and monitoring should be done to the food caterer to prevent another outbreak.

Keywords: disease outbreak, foodborne disease, food poisoning, outbreak

Procedia PDF Downloads 153
7790 Strength and Permeability Characteristics of Fiber Reinforced Concrete

Authors: Amrit Pal Singh Arora

Abstract:

The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age.

Keywords: curing age, fiber shape, fly ash, Darcy’s law, Ppermeability

Procedia PDF Downloads 310