Search results for: networked model predictive control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26102

Search results for: networked model predictive control

21932 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 439
21931 Uncertainty in Risk Modeling

Authors: Mueller Jann, Hoffmann Christian Hugo

Abstract:

Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.

Keywords: risk model, uncertainty monad, derivatives, contract algebra

Procedia PDF Downloads 580
21930 Effective Infection Control Measures to Prevent Transmission of Multi-Drug Resistant Organisms from Burn Transfer Cases in a Regional Burn Centre

Authors: Si Jack Chong, Chew Theng Yap, Wan Loong James Mok

Abstract:

Introduction: Regional burn centres face the spectra of introduced multi-drug resistant organisms (MDRO) from transfer patients resident in MDRO endemic countries. MDRO can cause severe nosocomial infection, which in massive burn patients, will lead to greater morbidity and mortality and strain the institution financially. We aim to highlight 4 key measures that have effectively prevented transmission of imported MDRO. Methods: A case of Candida auris (C. auris) from a massive burn patient transferred from an MDRO endemic country is used to illustrate the measures. C. auris is a globally emerging multi-drug resistant fungal pathogen causing nosocomial transmission. Results: Infection control measures used to mitigate the risk of outbreak from transfer cases are: (1) Multidisciplinary team approach involving Infection Control and Infectious Disease specialists early to ensure appropriate antibiotics use and implementation of barrier measures, (2) aseptic procedures for dressing change with strict isolation and donning of personal protective equipment in the ward, (3) early screening of massive burn patient from MDRO endemic region, (4) hydrogen peroxide vaporization terminal cleaning for operating theatres and rooms. Conclusion: The prevalence of air travel and international transfer to regional burn centres will need effective infection control measures to reduce the risk of transmission from imported massive burn patients. In our centre, we have effectively implemented 4 measures which have reduced the risks of local contamination. We share a recent case report to illustrate successful management of a potential MDRO outbreak resulting from transfer of massive burn patient resident in an MDRO endemic area.

Keywords: burns, burn unit, cross infection, infection control

Procedia PDF Downloads 156
21929 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 15
21928 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 112
21927 Enhancement of Biomass and Bioactive Compounds in Kale Subjected to UV-A LED Lights

Authors: Jin-Hui Lee, Myung-Min Oh

Abstract:

The application of temporary abiotic stresses before crop harvest is a potential strategy to enhance phytochemical content. The objective of this study was to determine the effect of various UV-A LED lights on the growth and content of bioactive compounds in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were cultivated in a plant factory with artificial lighting (air temperature of 20℃, relative humidity of 60%, photosynthesis photon flux density (PPFD) of 125 µmol·m⁻²·s⁻¹) for 3 weeks. Kale plants were irradiated by four types of UV-A LEDs (peak wavelength; 365, 375, 385, and 395 nm) with 30 W/m² for 7 days. As a result, image chlorophyll fluorescence (Fv/Fm) value of kale leaves was lower as the UV-A LEDs peak wavelength was shorter. Fresh and dry weights of shoots and roots of kale plants were significantly higher in the plants under UV-A than the control at 7 days of treatment. In particular, the growth was significantly increased with a longer peak wavelength of the UV-A LEDs. The results of leaf area and specific leaf weight showed a similar pattern with those of growth characteristics. Chlorophyll content was highest in kale leaves subjected to UV-A LEDs with the peak wavelength of 395 nm at 3 days of treatment compared with the control. Total phenolic contents of UV-A LEDs with the peak wavelength of 395 nm at 5 and 6 days of treatment were 44% and 47% higher than those of the control, respectively. Antioxidant capacity showed almost the same pattern as the results of total phenol content. The activity of phenylalanine ammonia-lyase was approximately 11% and 8% higher in the UV-A LEDs with the peak wavelength of 395 nm compared to the control at 5 and 6 days of treatment, respectively. Our results imply that the UV-A LEDs with relative longer peak wavelength were effective to improve growth as well as the content of bioactive compounds of kale plants.

Keywords: bioactive compounds, growth, Kale, UV-A LEDs

Procedia PDF Downloads 146
21926 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 93
21925 Development and Compositional Analysis of Functional Bread and Biscuit from Soybean, Peas and Rice Flour

Authors: Jean Paul Hategekimana, Bampire Claudine, Niyonsenga Nadia, Irakoze Josiane

Abstract:

Peas, soybeans and rice are crops which are grown in Rwanda and are available in rural and urban local markets and they give contribution in reduction of health problems especially in fighting malnutrition and food insecurity in Rwanda. Several research activities have been conducted on how cereals flour can be mixed with legumes flour for developing baked products which are rich in protein, fiber, minerals as they are found in legumes. However, such activity was not yet well studied in Rwanda. The aim of the present study was to develop bread and biscuit products from peas, soybeans and rice as functional ingredients combined with wheat flour and then analyze the nutritional content and consumer acceptability of new developed products. The malnutrition problem can be reduced by producing bread and biscuits which are rich in protein and are very accessible for every individual. The processing of bread and biscuit were made by taking peas flour, soybeans flour and rice flour mixed with wheat flour and other ingredients then a dough was made followed by baking. For bread, two kind of products were processed, for each product one control and three experimental samples in different three ratios of peas and rice were prepared. These ratios were 95:5, 90:10 and 80:20 for bread from peas and 85:5:10, 80:10:10 and 70:10:20 for bread from peas and rice. For biscuit, two kind of products were also processed, for each product one control sample and three experimental samples in three different ratios were prepared. These ratios are 90:5:5,80:10:10 and 70:10:20 for biscuit from peas and rice and 90:5:5,80:10:10 and 70:10:20 for biscuit from soybean and rice. All samples including the control sample were analyzed for the consumer acceptability (sensory attributes) and nutritional composition. For sensory analysis, bread from of peas and rice flour with wheat flour at ratio 85:5:10 and bread from peas only as functional ingredient with wheat flour at ratio 95:5 and biscuits made from a of soybeans and rice at a ratio 90:5:5 and biscuit made from peas and rice at ratio 90:5:5 were most acceptable compared to control sample and other samples in different ratio. The moisture, protein, fat, fiber and minerals (Sodium and iron.) content were analyzed where bread from peas in all ratios was found to be rich in protein and fiber compare to control sample and biscuit from soybean and rice in all ratios was found to be rich in protein and fiber compare to control sample.

Keywords: bakery products, peas and rice flour, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 69
21924 Impact of Financial Technology Growth on Bank Performance in Gulf Cooperation Council Region

Authors: Ahmed BenSaïda

Abstract:

This paper investigates the association between financial technology (FinTech) growth and bank performance in the Gulf Cooperation Council (GCC) region. Application is conducted on a panel dataset containing the annual observations of banks covering the period from 2012 to 2021. FinTech growth is set as an explanatory variable on three proxies of bank performance. These proxies are the return on assets (ROA), return on equity (ROE), and net interest margin (NIM). Moreover, several control variables are added to the model, including bank-specific and macroeconomic variables. The results are significant as all the proxies of the bank performance are negatively affected by the growth of FinTech startups. Consequently, banks are urged to proactively invest in FinTech startups and engage in partnerships to avoid the risk of disruption.

Keywords: financial technology, bank performance, GCC countries, panel regression

Procedia PDF Downloads 83
21923 The Effects of Spirulina (Spiruvit Supplement) on Healthy Weight Control

Authors: F. Berahmandpour, K. Bagheri

Abstract:

Introduction: Spirulina is nutritious blue - green algae which are used as supplement or a preservative in many foods. The studies about the algae argue that the Spirulina can improve immune system, increase fat utilization, reduce oxidative stress and promote endurance at high-intensity exercise. The purpose of study is to assess the effects of Spirulina supplement on healthy weight control. Method: the study is a cross-sectional study which had 30 participants. The participants were men and women who referred to the nutrition and diet therapy clinic (in west of Tehran / Iran) for control weight. The sampling was a purposeful sampling. The participants were divided into three groups, and they were surveyed for 4 weeks. In the first group, 10 participants were used Spirulia supplement (dose: 500mg of Spiruvit Supplement as tablet / 3 times per day) without any special diet. The second group was 10 participants who received Spirulia supplement (dose 500mg of Spiruvit Supplement as tablet / 3 times per day) with a weight loss exercise program and without any special diet. The third group was 10 participants who used Spirulia supplement (dose 500mg of Spiruvit Supplement as tablet / 3 times per day) with an optimum weight loss diet. Results and Discussion: The results show that there were not any significant loss weights in first group. In while, the participants of second group argued that the Spirulina supplement had positive effects on their mud and physical body; however the clinical results showed that the loss weight had fixed tilt in this group. The significant results of study were related to the third group, because the participations could continuous loss weight during 4 weeks. However, the optimum weight loss diets were effective effects on weight loss in this group, but the researchers found that Spirulina supplement could improve loss weight with set of hormonal system (especially in women with menopause). Conclusion: The study is concluded that the Spirulina as a supplement (Spiruvit Supplement) can be an effective effect on healthy weight control, if it is used with a nutritious healthy weight loss diet. In fact, the effect of Spirulina can be related to powerful antioxidant effects and improvable hormonal system in the body.

Keywords: diet, healthy weight control, spirulina, spiruvit supplement

Procedia PDF Downloads 310
21922 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing

Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima

Abstract:

Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.

Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control

Procedia PDF Downloads 355
21921 The Investigation of LPG Injector Control Circuit on a Motorcycle

Authors: Bin-Wen Lan, Ying-Xin Chen, Hsueh-Cheng Yang

Abstract:

Liquefied petroleum gas is a fuel that has high octane number and low carbon number. This paper uses MSC-51 controller to investigate the effect of liquefied petroleum gas (LPG) on exhaust emissions for different engine speeds in a single cylinder, four-stroke and spark ignition engine. The results indicate that CO, CO2 and NOX exhaust emissions are lower with the use of LPG compared to the use of unleaded gasoline by using the developed controller. The open-loop in the LPG injection system was controlled by MCS-51 single chip. The results show that if a SI engine is operated with LPG fuel rather than gasoline fuel under the same conditions, significant reduction in exhaust emissions can be achieved. In summary, LPG has positive effects on main exhaust emissions such as CO, CO2 and NOX.

Keywords: LPG, control circuit, emission, MCS-51

Procedia PDF Downloads 502
21920 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 255
21919 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 422
21918 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 280
21917 Islamic Finance: What is the Outlook for Italy?

Authors: Paolo Pietro Biancone

Abstract:

The spread of Islamic financial instruments is an opportunity to offer integration for the immigrant population and to attract, through the specific products, the richness of sovereign funds from the "Arab" countries. However, it is important to consider the possibility of comparing a traditional finance model, which in recent times has given rise to many doubts, with an "alternative" finance model, where the ethical aspect arising from religious principles is very important.

Keywords: banks, Europe, Islamic finance, Italy

Procedia PDF Downloads 276
21916 T Cell Immunity Profile in Pediatric Obesity and Asthma

Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma

Abstract:

The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.

Keywords: asthma, flow cytometry, pediatric obesity, T cells

Procedia PDF Downloads 352
21915 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 127
21914 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 126
21913 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 355
21912 Effect of Hill Interval Training on VO₂ Max among Filed Hockey Players

Authors: Sujay Bisht

Abstract:

The purpose of the study was to evaluate and find out the effect of Hill interval training on VO₂ MAX among field Hockey players. Thirty male field hockey players were selected from LNIPE, Guwahati who were studied in B.P.Ed course. The selected subjects were aged between 18 to 23 years. The VO₂ MAX was calculated and they were divided into two group. One group (N=15) considered as control group that did not participated in any special training apart from regular scheduled/curriculum and another group (N=15) considered as an experimental group which underwent four week Hill Training program. The selected criterion variable such VO₂ Max was measured by the cooper 12min/run/walk test and scores was recorded in ml/kg/min. The subjects were tested on selected criterion variable such as VO₂ Max prior and immediately after the training program. The pretest and posttest data were evaluate by the Analysis of Covariance (ANCOVA) to find out the significance difference if any between the experimental and control group on selected criterion variable. The level of significance was set at 0.05 level of confidence. After applied ANCOVA it was revealed that there was a significant different among the experimental and control group on VO₂ Max. Finally it was concluded that 4 week of Hill interval training effect the VO₂ max performance of field hockey players.

Keywords: VO₂ max, hill interval training, ANCOVA, experimental group

Procedia PDF Downloads 222
21911 Social Collaborative Learning Model Based on Proactive Involvement to Promote the Global Merit Principle in Cultivating Youths' Morality

Authors: Wera Supa, Panita Wannapiroon

Abstract:

This paper is a report on the designing of the social collaborative learning model based on proactive involvement to Promote the global merit principle in cultivating youths’ morality. The research procedures into two phases, the first phase is to design the social collaborative learning model based on proactive involvement to promote the global merit principle in cultivating youths’ morality, and the second is to evaluate the social collaborative learning model based on proactive involvement. The sample group in this study consists of 15 experts who are dominant in proactive participation, moral merit principle and youths’ morality cultivation from executive level, lecturers and the professionals in information and communication technology expertise selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. This study has explored that there are four significant factors in promoting the hands-on collaboration of global merit scheme in order to implant virtues to adolescences which are: 1) information and communication Technology Usage; 2) proactive involvement; 3) morality cultivation policy, and 4) global merit principle. The experts agree that the social collaborative learning model based on proactive involvement is highly appropriate.

Keywords: social collaborative learning, proactive involvement, global merit principle, morality

Procedia PDF Downloads 390
21910 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia

Authors: Farhan Beg, Raymond Moberly

Abstract:

The Indian subcontinent is facing a massive challenge with regards to energy security in member countries, to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts. The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Besides enabling energy security in the subcontinent, it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC-HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.

Keywords: super grid, wind and solar energy, high voltage direct current, electricity management, load flow analysis

Procedia PDF Downloads 430
21909 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 160
21908 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 538
21907 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 163
21906 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 398
21905 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 151
21904 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 72
21903 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 474