Search results for: advanced technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9611

Search results for: advanced technology

5441 The Use of Crisis Workplace Technology to Protect Communication Processes of Critical Infrastructure

Authors: Jiri Barta, Jiří F. Urbanek

Abstract:

This paper deals with a protection of the national and European infrastructure. It is issue nowadays. The paper deals with the perspectives and possibilities of "smart solutions" to critical infrastructure protection. The research project deals with computers aided technologies are used from the perspective of new, better protection of selected infrastructure objects. Protection is focused on communication and information channels. These communication and information channels are very important for the functioning of the system of protection of critical infrastructure elements.

Keywords: interoperability, communication systems, controlling proces, critical infrastructure, crisis workplaces, continuity

Procedia PDF Downloads 303
5440 Exploring Individual Decision Making Processes and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies

Authors: Rebecca J. Hafner, Daniel Read, David Elmes

Abstract:

The current research applies decision making theory in order to address the problem of increasing uptake of energy-efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. Specifically, in two studies we apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. As researchers in the Interdisciplinary centre for Storage, Transformation and Upgrading of Thermal Energy (i-STUTE) are currently developing energy efficient heating systems for homes and businesses, we focus on the context of home heating choice, and compare preference for a standard condensing boiler versus an energy efficient heat pump, according to experimental manipulations in the structure of prior information. In Study 1, we find that people prefer stronger alignable features when options are similar; an effect which is mediated by an increased tendency to infer missing information is the same. Yet, in contrast to previous research, we find no effects of alignability on option preference when options differ. The advanced methodological approach used here, which is the first study of its kind to randomly allocate features as either alignable or non-alignable, highlights potential design effects in previous work. Study 2 is designed to explore the interaction between alignability and construal level as an explanation for the shift in attentional focus when options differ. Theoretical and applied implications for promoting energy efficient technologies are discussed.

Keywords: energy-efficient technologies, decision-making, alignability effects, construal level theory, CO2 reduction

Procedia PDF Downloads 332
5439 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF

Authors: Ashok K. Gupta

Abstract:

Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.

Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements

Procedia PDF Downloads 70
5438 LIS Students’ Experience of Online Learning During Covid-19

Authors: Larasati Zuhro, Ida F Priyanto

Abstract:

Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.

Keywords: learning, LIS students, pandemic, covid-19

Procedia PDF Downloads 133
5437 The Real Business Power of Virtual Reality: From Concept to Application

Authors: Svetlana Bialkova, Marnix van Gisbergen

Abstract:

Advanced Virtual Reality (VR) technologies offer compelling multisensory and interactive experiences applicable in various fields from education to entertainment. However, serious VR applications within the financial sector are scarce, and managing ‘real’ business services with(in) VR is a challenge inviting further investigation. The current research addresses this challenge, by exploring the key parameters influencing the VR business power and the development of appropriate VR applications in real financial business. We conducted profound investigation of both B2B and B2C needs, and how these could be met. In three studies, we have approached experts from leading international banks (finance to computer specialists), and their (potential) customers. Study 1 included focus group discussions with experts. First, participants could experience different VR devices such as Samsung Gear VR, then a structured discussion was held. The outcomes are analyzed and summarized in a portfolio. Study 2 further used the portfolio analyzer to profile the management of real business services with(in) VR. Again experts participated, where first being introduced with Samsung Gear, then experiencing it and being interviewed. Based on the outcomes, a survey was developed to interview (potential) customers and test ideas created (Study 3). The results suggest that developing proper system architectures to connect people and to connect devices is crucial for building up powerful business with(in) VR. From one side, connecting devices, e.g., pairing mobile Head Mounted Displays for VR with smart-phones and/or wearable technologies would be appropriate way “to have” customers anywhere, anytime with a brand and/or business. Developing VR Apps, providing detailed real time visualization of performance and infrastructure types could enable 3D VR navigation, 3D contents viewing, but also being opportunity for connecting people in collaborative platforms. The outcomes of the current research are summarized in a model which could be applied to unlock the real business power of VR.

Keywords: business power, B2B, B2C, VR applications

Procedia PDF Downloads 293
5436 Selection of Developmental Stages of Bovine in vitro-Derived Blastocysts Prior to Vitrification and Embryo Transfer: Implications for Cattle Breeding Programs

Authors: Van Huong Do, Simon Walton, German Amaya, Madeline Batsiokis, Sally Catt, Andrew Taylor-Robinson

Abstract:

Identification of the most suitable stages of bovine in vitro-derived blastocysts (early, expanded and hatching) prior to vitrification is a straightforward process that facilitates the decision as to which blastocyst stage to use for transfer of fresh and vitrified embryos. Research on in vitro evaluation of suitable stages has shown that the more advanced developmental stage of blastocysts is recommended for fresh embryo transfer while the earlier stage is proposed for embryo transfer following vitrification. There is, however, limited information on blastocyst stages using in vivo assessment. Hence, the aim of the present study was to determine the optimal stage of a blastocyst for vitrification and embryo transfer through a two-step procedure of embryo transfer followed by pregnancy testing at 35, 60 and 90 days of pregnancy. 410 good quality oocytes aspirated by the ovum pick-up technique from 8 donor cows were subjected to in vitro embryo production, vitrification and embryo transfer. Good quality embryos were selected, subjected to vitrification and embryo transfer. Subsequently, 77 vitrified embryos at different blastocyst stages were transferred to synchronised recipient cows. The overall cleavage and blastocyst rates of oocytes were 68.8% and 41.7%, respectively. In addition, the fertility and blastocyst production of 6 bulls used for in vitro fertilization was examined and shown to be statistically different (P<0.05). Results of ongoing pregnancy trials conducted at 35 days, 60 days and 90 days will be discussed. However, preliminary data indicate that individual bulls demonstrate distinctly different fertility performance in vitro. Findings from conception rates would provide a useful tool to aid selection of bovine in vitro-derived embryos for vitrification and embryo transfer in commercial settings.

Keywords: blastocyst, embryo transfer, in vitro-derived embryos, ovum pick-up, vitrification

Procedia PDF Downloads 311
5435 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 91
5434 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 52
5433 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 365
5432 Nutritional Value and Leaf Disease Resistance of Different Varieties of Wheat

Authors: Danutė Jablonskytė-Raščė, Vidas Damanauskas

Abstract:

The wheat (Triticum) genus is divided into many species, of which only two are widely distributed in the world - common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.). Common (soft) wheat is the most common type of wheat in the world and the most suitable for the harsh climate of Lithuania, but the grains have lower protein content and poorer nutritional properties. Durum wheat is characterized by a high protein content of the grain, but it is a crop of warmer climates grown in southern countries, Italy, Spain, the United States, Egypt, etc. Today's important issue is food, its resources and quality. The research focuses on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the warming climate conditions. Climatic conditions change the distribution of fungi and their hosts. Plants that have grown in our climate for many years have adapted to the use of fungicides, so the aim is to study cereal varieties grown in warmer climates and compare them with our country's varieties, studying their nutritional value and the spread of fungal diseases. The field experiments of different varieties of wheat were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2023. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the resistance to leaf diseases and the nutritional value of various wheat varieties. This research aims to focus on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the conditions of the warming climate. The study found that hot and humid summer weather led to the spread of foliar diseases in wheat. Tan spot (Pyrenophora tritici-repentis) is mostly spread in wheat crops. This disease had an average prevalence of 86.90%. The wheat crop was sparse, so this year was unfavorable for the spread of powdery mildew (Blumeria graminis). Dry weather prevailed during the period of flowering of cereals, which prevented the spread of ear diseases. Examining the qualitative indicators of grain, it was found that durum wheat had the best parameters.

Keywords: varieties, wheat, leaf disease, grain quality

Procedia PDF Downloads 51
5431 Vehicle Activity Characterization Approach to Quantify On-Road Mobile Source Emissions

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. Other methods provided better accuracy utilizing annual average estimates. Travel demand models provided an intermediate level of detail through average daily volumes. Currently, higher accuracy can be established utilizing microscopic analyses by splitting the network links into sub-links and utilizing second-by-second trajectories to calculate emissions. The need to accurately quantify transportation-related emissions from vehicles is essential. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited access highway in Orlando, Florida. First, (at the most basic level), emissions were estimated for the entire 10-mile section 'by hand' using one average traffic volume and average speed. Then, three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NOx, PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.

Keywords: limited access highways, MOVES, operating mode distribution (OPMODE), transportation emissions, vehicle specific power (VSP)

Procedia PDF Downloads 342
5430 Application of Electronic Nose Systems in Medical and Food Industries

Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni

Abstract:

Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.

Keywords: e-nose, low cost, odor detection, food safety

Procedia PDF Downloads 144
5429 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 199
5428 ACTN3 R577X Polymorphism in Romany Children from Eastern Slovakia

Authors: Jarmila Bernasovska, Pavel Ružbarský, Ivan Bernasovsky, Regina Lohajová Behulová

Abstract:

The paper presents the results of the application of molecular genetics methods in sport research, with special emphasis on the most advanced methods and trends in diagnosing of motoric predispositions for the sake of identifying talented children. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. Genetics is important in determining the capacity of an individual and for professional sport level. Genetic information can be used for individual genetic predispositions in early childhood. The phenotypes are influenced by a combination of genetic and environmental factors. The aim of the presented study was to examine physical condition, coordination skills, motoric docility and to determine the frequency of ACTN3 (R577X) gene in Romany children from Eastern Slovakia and compared their motoric performance with non-Romany children. This paper is not looking just for a performance, but also its association to genetic predispositions in relation to ACTN3 gene and its R577X polymorphism. Genotype data were obtained from 175 Romany children from 6 to 15 years old and 218 non-Romany children at the same age from Eastern Slovakia. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor Gene 6000 Corbett and LightCycler 480 Roche). Romany children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in children was different from controls. The frequency of XX genotype was 11,45% which is comparable to a frequency of an Indian population. Data were analysed with the ANOVA statistical programme and parametric and nonparametric tests. This work was supported by grants APVV-0716-10, ITMS 26220120023 and ITMS 26220120041.

Keywords: ACTN3 gene, R577X polymorphism, Romany children, sport performance, Slovakia

Procedia PDF Downloads 457
5427 Persisting Gender Gap in the Field of Academic Entrepreneurship: The Case of Switzerland

Authors: Noemi Schneider, Richard Blaese, Pietro Morandi, Brigitte Liebig

Abstract:

While women are increasingly frequent among the founders of innovative companies and advanced researchers in many university research institutes today, they are still an exception among initiators of research-based spin-offs. This also applies to countries such as Switzerland, which does have a leading position in international innovation rankings. Starting from a gender-sensitive neo-institutionalist perspective, this paper examines formal and non-formal institutional framework conditions for academic spin-offs at Swiss universities of applied sciences. This field, which stresses vocational education and practice-oriented research, seems to conserve the gender gap in the area of establishing research-based spin-offs spin-off rates strongly. The analysis starts from a survey conducted in 2017 and 2018 at all seven public universities of applied sciences in Switzerland as well as on an evaluation of expert interviews performed with heads of start-up centers, where also spin-offs from universities of applied sciences get support. The results show the mechanisms, which contribute to gender gaps in academic entrepreneurship in higher education. University's female employees have hardly been discovered as target groups. Thus, only 10.5% of universities of applied sciences offer specific support measures for women in academia. And only 1 out of 7 universities of applied sciences offer mentoring programs for female entrepreneurs while in addition there are no financial resources available to support female founders in academia. Moreover, the awareness of the gender gap in academic entrepreneurship is low among founding commissioners. A consistent transfer strategy might be key for bringing in line the formal and non-formal preconditions relevant for the formation of research-based spin-offs and for providing an effective incentive structure to promote women.

Keywords: gender, science-based spin-off, universities of applied sciences, knowledge transfer strategy

Procedia PDF Downloads 156
5426 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 433
5425 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 137
5424 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 447
5423 Dry-Extrusion of Asian Carp, a Sustainable Source of Natural Methionine for Organic Poultry Production

Authors: I. Upadhyaya, K. Arsi, A. M. Donoghue, C. N. Coon, M. Schlumbohm, M. N. Riaz, M. B. Farnell, A. Upadhyay, A. J. Davis, D. J. Donoghue

Abstract:

Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry, a natural, cost effective source of methionine that can replace synthetic methionine is unavailable. Invasive Asian carp (AC) are a potential natural methionine source; however, there is no proven technology to utilize this fish methionine. Commercially available rendering is environmentally challenging due to the offensive smell produced during production. We explored extrusion technology as a potential cost effective alternative to fish rendering. We also determined the amino acid composition, digestible amino acids and total metabolizable energy (TMEn) for the extruded AC fish meal. Dry extrusion of AC was carried out by mixing the fish with soybean meal (SBM) in a 1:1 proportion to reduce high moisture in the fishmeal using an Insta Pro Jr. dry extruder followed by drying and grinding of the product. To determine the digestible amino acids and TMEn of the extruded product, a colony of cecectomized Bovans White Roosters was used. Adult roosters (48 weeks of age) were fasted for 30 h and tube fed 35 grams of 3 treatments: (1) extruded AC fish meal, (2) SBM and (3) corn. Excreta from each individual bird was collected for the next 48 h. An additional 10 unfed roosters served as endogenous controls. The gross energy and protein content of the feces from the treatments were determined to calculate the TMEn. Fecal samples and treatment feeds were analyzed for amino acid content and percent digestible amino acid. Results from the analysis suggested that addition of Asian carp increased the methionine content of SBM from 0.63 to 0.83%. Also, the digestibility of amino acid and the TMEn values were greater for the AC meal with SBM than SBM alone. The dry extruded AC meal analysis is indicative that the product can replace SBM alone and enhance natural methionine in a standard poultry ration. The results from feed formulation using different concentrations of the AC fish meal depict a potential diet which can supplement the required methionine content in organic poultry production.

Keywords: Asian carp, extrusion, natural methionine, organic poultry

Procedia PDF Downloads 219
5422 Using Technology to Enhance the Student Assessment Experience

Authors: Asim Qayyum, David Smith

Abstract:

The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.

Keywords: information tools, assessment, online learning, student assessment experience

Procedia PDF Downloads 564
5421 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 269
5420 Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa

Authors: Samira Bensoltane, Smina Ait Hamlet, Samti Meriem, Semmasel Asma

Abstract:

Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L).

Keywords: Helix aspersa, insecticides, thiamethoxam, ginger, hepatopancreas

Procedia PDF Downloads 218
5419 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: local interconnect network, controller, transceiver, processor

Procedia PDF Downloads 291
5418 Re-Engineering Management Process in IRAN’s Smart Schools

Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi

Abstract:

Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.

Keywords: re-engineering, management process, smart school, Iran's school

Procedia PDF Downloads 247
5417 Assessment of Factors Influencing Adoption of Agroforestry Technologies in Halaba Special Woreda, Southern Ethiopia

Authors: Mihretu Erjabo

Abstract:

Halaba special district is characterized by drought, soil erosion, high population pressure, poor livestock production, lack of feed for livestock, very deep water table, very low productivity of crops and food insufficiency. In order to address these problems, the woreda agricultural development office along with other management practices such as soil physical conservation measures agroforestry was introduced decades ago as a means to alleviate the problem. However, the level of agroforestry adoption remains low. Objective of this study was to identify the factors that influence adoption of agroforestry technologies by farmers in the district. Random sampling was employed to select two kebele administrations and respondents. Data collection was conducted by rural household questionnaire survey, participatory rural appraisal, questionnaires for local and woreda extension staff, secondary data resources and field observation. A sample of 12 key informants, 6 extension staffs, and 182 households, were used in the data collection. Chi square test used to determine significant relationships between adoption of agroforestry and 15 selected variables. Out of which eleven were found to be significant to affect farmers’ adoptiveness. These were frequency of visits of farmers (13.39%), participation in training (11.49%), farmers’ attitude towards agroforestry practices (10.61%), frequency of visits of extensionists (10.38%), participation in extension meeting (10.34%), participation in field day (10.28%), land holding size (9.29%), level of literacy (8.78%), awareness about the importance of agroforestry technology packages (7.06%), time taken from their residence to nearest extension (5.04%) and gender of respondents (3.34%). This study also identified various factors that result in low adoption rates of agroforestry including fear of competition, seedling, rainfall and labour shortage, free grazing, financial problem, expecting trees as soil degrader and long span of trees and lack of need ranking. To improve farmers’ adoption, the factors identified should be well addressed by launching a series and recurrent outreach extension program appropriate and suitable to farmers need.

Keywords: farmers attitude, farmers participation, soil degradation, technology packages

Procedia PDF Downloads 162
5416 Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates

Authors: Qiong Tian, Lifeng Zhang, Demei Yu, Ajit D. Kelkar

Abstract:

Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs.

Keywords: boron nitride, epoxy, functionalization, prepreg, composite

Procedia PDF Downloads 438
5415 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 64
5414 Electrifying Textile Wastewater Sludge through Up-flow Anaerobic Sludge Blanket Reactor for Sustainable Waste Management

Authors: Tewodros Birhan, Tamrat Tesfaye

Abstract:

Energy supply and waste management are two of humanity's greatest challenges. The world's energy supply primarily relies on fossil fuels, which produce excessive carbon dioxide emissions when burned. When released into the atmosphere in high concentrations, these emissions contribute to global warming. Generating textile wastewater sludge from the Bahir Dar Textile Industry poses significant environmental challenges. This sludge, a byproduct of extensive dyeing and finishing processes, contains a variety of harmful chemicals and heavy metals that can contaminate soil and water resources. This research work explores sustainable waste management strategies, focusing on biogas production from textile wastewater sludge using up-flow anaerobic sludge blanket reactor technology. The objective was to harness biogas, primarily methane, as a renewable energy source while mitigating the environmental impact of textile wastewater disposal. Employing a Central Composite Design approach, experiments were meticulously designed to optimize process parameters. Two key factors, Carbon-to-Nitrogen ratio, and pH, were varied at different levels (20:1 and 25:1 for C: N ratio; 6.8 and 7.6 for pH) to evaluate their influence on methane yield. A 0.4m3 up-flow anaerobic sludge blanket reactor was constructed to facilitate the anaerobic digestion process. Over 26 days, the reactor underwent rigorous testing and monitoring to ascertain its efficiency in biogas production. Meticulous experimentation and data analysis found that the optimal conditions for maximizing methane yield were achieved. Notably, a methane yield of 56.4% was attained, which signifies the effectiveness of the up-flow anaerobic sludge blanket reactor in converting textile wastewater sludge into a valuable energy resource. The findings of this study hold significant implications for both environmental conservation and energy sustainability. Furthermore, the utilization of up-flow anaerobic sludge blanket reactor technology underscores its potential as a viable solution for biogas production from textile wastewater sludge, further promoting the transition towards a circular economy paradigm.

Keywords: anaerobic digestion, biogas energy, circular economy, textile sludge, waste-to-energy

Procedia PDF Downloads 17
5413 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 65
5412 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes

Procedia PDF Downloads 139