Search results for: train platforming
218 Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake
Authors: Mehrnoosh Mirzaei
Abstract:
Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction.Keywords: disaster education, earthquake sign marks, learning table, matching card, risk reduction behavior
Procedia PDF Downloads 257217 Studies on Tolerance of Chickpea to Some Pre and Post Emergence Herbicides
Authors: Rahamdad Khan, Ijaz Ahmad Khan
Abstract:
In modern agriculture the herbicides application are considered the most effective and fast in action against all types of weeds. But it’s a fact that the herbicide applicator cannot totally secure the crop plants from the possible herbicide injuries that further leads to several destructive changes in plant biochemistry. For the purpose pots studies were undertaken to test the tolerance order of chickpea against pre- emergence herbicides (Stomp 330 EC- Dual Gold 960 EC) and post- emergence herbicides (Topik 15 WP- Puma Super 75 EW- Isoproturon 500 EW) during 2012-13 and 2013-14. The experimental design was CRD with three replications. Plant height, number of branches plant-1, number of seeds plant-1, nodulation, seed protein contents and other growth related parameters in chickpea were examined during the investigations. The results indicate that all the enquire herbicides gave a significant variation to all recorded parameter of chick pea except nodule fresh and dray weight. Moreover the toxic effect of pre-emergence herbicide on chickpea was found higher as compared to post-emergence herbicides. Minimum chickpea plant height (50.50 cm), number of nodule plant-1 (17.83) and lowest seed protein (14.13 %) was recorded in Stomp 330 EC. Similarly the outmost seeds plant-1 (29.66) and number of nodule plant-1 (21) were found for Puma Super 75 EW. The results further showed that the highest seed protein content (21.75 and 21.15 %) was recorded for control/ untreated and Puma Super 75EW. Taking under concentration the possible negative impact of the herbicides the chemical application must be minimized up to certain extent at which the crop is mostly secure. However chemical weed control has many advantages so we should train our farmer regarding the proper use of agro chemical to minimize the loses in crops while using herbicides.Keywords: chickpea, herbicides, protein, stomp 330 EC, weed
Procedia PDF Downloads 490216 A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School
Authors: Wen-Te Chang, Yun-Hsin Pai
Abstract:
Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too.Keywords: STEAM, toy design, pedagogy plans, evaluation
Procedia PDF Downloads 283215 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 181214 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 86213 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 37212 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC
Authors: Mohamed Zellagui, Heba Ahmed Hassan
Abstract:
This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method
Procedia PDF Downloads 499211 Mental Imagery as an Auxiliary Tool to the Performance of Elite Competitive Swimmers of the University of the East Manila
Authors: Hillary Jo Muyalde
Abstract:
Introduction: Elite athletes train regularly to enhance their physical endurance, but sometimes, training sessions are not enough. When competition comes, these athletes struggle to find focus. Mental imagery is a psychological technique that helps condition the mind to focus and eventually help improve performance. This study aims to help elite competitive swimmers of the University of the East improve their performance with Mental Imagery as an auxiliary tool. Methodology: The study design used was quasi-experimental with a purposive sampling technique and a within-subject design. It was conducted with a total of 41 participants. The participants were given a Sport Imagery Ability Questionnaire (SIAQ) to measure imagery ability and the Mental Imagery Program. The study utilized a Paired T-test for data analysis where the participants underwent six weeks of no mental imagery training and were compared to six weeks with the Mental Imagery Program (MIP). The researcher recorded the personal best time of participants in their respective specialty stroke. Results: The results of the study showed a t-value of 17.804 for Butterfly stroke events, 9.922 for Backstroke events, 7.787 for Breaststroke events, and 17.440 in Freestyle. This indicated that MIP had a positive effect on participants’ performance. The SIAQ result also showed a big difference where -10.443 for Butterfly events, -5.363 for Backstroke, -7.244 for Breaststroke events, and -10.727 for Freestyle events, which meant the participants were able to image better than before MIP. Conclusion: In conclusion, the findings of this study showed that there is indeed an improvement in the performance of the participants after the application of the Mental Imagery Program. It is recommended from this study that the participants continue to use mental imagery as an auxiliary tool to their training regimen for continuous positive results.Keywords: mental Imagery, personal best time, SIAQ, specialty stroke
Procedia PDF Downloads 79210 Similar Script Character Recognition on Kannada and Telugu
Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy
Abstract:
This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN
Procedia PDF Downloads 53209 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables
Authors: Yue Huang, Hongcheng Gan
Abstract:
The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity
Procedia PDF Downloads 111208 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 89207 Educational Innovation through Coaching and Mentoring in Thailand: A Mixed Method Evaluation of the Training Outcomes
Authors: Kanu Priya Mohan
Abstract:
Innovation in education is one of the essential pathways to achieve both educational, and development goals in today’s dynamically changing world. Over the last decade, coaching and mentoring have been applied in the field of education as positive intervention techniques for fostering teaching and learning reforms in the developed countries. The context of this research was Thailand’s educational reform process, wherein a project on coaching and mentoring (C&M) was launched in 2014. The C&M project endeavored to support the professional development of the school teachers in the various provinces of Thailand, and to also enable them to apply C&M for teaching innovative instructional techniques. This research aimed to empirically investigate the learning outcomes for the master trainers, who trained for coaching and mentoring as the first step in the process to train the school teachers. A mixed method study was used for evaluating the learning outcomes of training in terms of cognitive- behavioral-affective dimensions. In the first part of the research a quantitative research design was incorporated to evaluate the effects of learner characteristics and instructional techniques, on the learning outcomes. In the second phase, a qualitative method of in-depth interviews was used to find details about the training outcomes, as well as the perceived barriers and enablers of the training process. Sample size constraints were there, yet these exploratory results, integrated from both methods indicated the significance of evaluating training outcomes from the three dimensions, and the perceived role of other factors in the training. Findings are discussed in terms of their implications for the training of C&M, and also their impact in fostering positive education through innovative educational techniques in the developing countries.Keywords: cognitive-behavioral-affective learning outcomes, mixed method research, teachers in Thailand, training evaluation
Procedia PDF Downloads 274206 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation
Authors: Li Hui, Riyadh Hindi
Abstract:
In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis
Procedia PDF Downloads 62205 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 156204 School-Based Oral Assessment in Malaysian Schools
Authors: Sedigheh Abbasnasab Sardareh
Abstract:
The current study investigates ESL teachers' voices in order to formulate further research on the effectiveness of the SBOA practices. It is an attempt to find out (1) what are ESL experienced teachers’ perceptions, experiences, attitudes, and beliefs of SBOA; (2) what teaching and learning aspects of SBOA needs focus to enhance its effectiveness; (3) external issues related to the implementation of SBOA; (4) internal issues related to the implementation of SBOA; and also (5) perceived recommendations on SBOA. The study utilized focus group discussion sessions. 9 experienced ESL (5 females and 4 males) teachers were selected based on the consent letters sent to them. These teachers had over 20 years experience in both traditional and SBOA-type assessment and the train-the-trainer experts recommended by the Ministry of Education. Respondents were guided with open-ended questions to extracts their perceived experiences implementing SBOA guided structurally by the author as the moderator. Data were first discussed with the respondents for further clarifications and then only analyzed and re-confirmed with some recommendations before the final presentation of this preliminary results were presented here. The focus group discussions yielded some important perceived views on the SBOA implementation. Some of the themes were discussed and some recommendations were proposed for further in-depth study by the Ministry of Education. Some of the future directions based on the results were also put forward. Some external and internal variables were important in order for successful implementation of SBOA. Mere implementing a policy should be taken into consideration because this might impede some of the teaching and learning processes both by the classroom stakeholders such as teachers and student. More research methods such as the use of questionnaires could be utilized to further investigate to large populations of teacher educators in Malaysia.Keywords: school based oral assessment, Malaysia, ESL, focus group discussion
Procedia PDF Downloads 325203 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050
Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva
Abstract:
Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta
Procedia PDF Downloads 82202 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 120201 Coherency of First Year Nursing Students' Lifestyles with Their Future Career
Authors: Maria Rodriguez-Gazquez, Sara Chaparro-Hernandez, Jose Rafael Gonzalez-Lopez
Abstract:
Introduction: Nurses are models in healthy behaviors for their patients. This is why it is important for these professionals to not only have a good knowledge of healthy behaviors but also practice. Today’s nursing students will be tomorrow’s professionals and to fulfill their role in caring they not only need knowledge, they also must maintain behaviors which enable them to improve and protect both the health of others and their own. This is why the university is a unique environment of opportunities to foster the maximum potential of health. To care for others we first have to take care of ourselves. It is important for these behaviors in Nursing students to be evaluated during the years of their university education in order to design timely interventions which improve the health behaviors of the future professionals. Aim: The objective of this study was to evaluate the lifestyles of first year nursing students of two Universities. Methodology: Cross-sectional study. In 2014, 140 first year Nursing students of two Universities Seville –US- (Spain -Europe, n=37) and Antioquia –UA- (Colombia -South America, n=93) self-reported the FANTASTIC Lifestyle checklist. Results: Findings reveal that (I) UA students doubled the percentage of dangerous or bad lifestyles with respect to the US students, (II) the lifestyles are not appropriate in 1 of 3 of nursing students in both Universities, (II) there are statistically significant differences for family support items (higher in US), positive thinkers (higher in UA), the use of safety belts and alcohol consumption before driving (higher in US). Discussion: The nursing students are mostly young people who are at a stage in which some of the most important behaviors for adult life can still be molded. It is necessary to develop educational interventions in their Nursing curricula to strengthen healthy behaviours during training. Nursing Schools not only have the duty to train professionals, but to also be agents that foster the health, welfare and quality of those who study and work there. It must encourage knowledge and skills oriented to healthy lifestyles.Keywords: cross-sectional studies, life style, nursing students, questionnaires
Procedia PDF Downloads 273200 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 146199 The Impact of Nonverbal Communication Between Restaurant Staff and Customers on Customer Attraction in Restaurants: A Case Study of Food Courts in Tehran City
Authors: Mahshid Asadollahi, Mohammad Akbari Asl
Abstract:
The restaurant industry is highly competitive, and restaurants are constantly looking for ways to attract new customers and retain their existing ones. Nonverbal communication is an important factor in creating a positive customer experience and can play a significant role in attracting customers to restaurants. Nonverbal communication can include body language, facial expressions, tone of voice, and physical proximity, among other things. The present study aimed to investigate the impact of nonverbal communication between restaurant employees and customers on attracting customers in food courts in Tehran. The research method was descriptive-correlational, and the statistical population of this study included all customers of food court restaurants in Tehran, which was about 30 restaurants. The research sample was selected through probability sampling, and 440 customers completed emotional response, customer satisfaction, and nonverbal communication questionnaires in person. The data obtained were analyzed using multiple regression analysis. The results showed that vocal language, employee proximity, physical appearance, and speech movements, as components of nonverbal communication of restaurant employees, had an impact on attracting customers. Additionally, positive and negative emotions of customers have a significant relationship with customer attraction in Food Court restaurants. The study shows that various nonverbal communication factors can play a significant role in attracting customers, and that positive and negative customer emotions can affect customer satisfaction. Therefore, restaurant owners and managers should pay attention to nonverbal communication and train their employees accordingly to create a positive and welcoming atmosphere for customers.Keywords: verbal language, proximity of employees, physical appearance, speech gestures, nonverbal communication, customer emotions, customer attraction
Procedia PDF Downloads 99198 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 141197 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya
Authors: Benedict O. Muyale, Emmanuel S. Murunga
Abstract:
Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.Keywords: cities, transport, Nairobi, green technologies
Procedia PDF Downloads 321196 Optimisation Model for Maximising Social Sustainability in Construction Scheduling
Authors: Laura Florez
Abstract:
The construction industry is labour intensive, and the behaviour and management of workers have a direct impact on the performance of construction projects. One of the issues it currently faces is how to recruit and maintain its workers. Construction is known as an industry where workers face the problem of short employment durations, frequent layoffs, and periods of unemployment between jobs. These challenges not only creates pressures on the workers but also project managers have to constantly train new workers, face skills shortage, and uncertainty on the quality of the workers it will attract. To consider worker’s needs and project managers expectations, one practice that can be implemented is to schedule construction projects to maintain a stable workforce. This paper proposes a mixed integer programming (MIP) model to schedule projects with the objective of maximising social sustainability of construction projects, that is, maximise labour stability. Aside from the social objective, the model accounts for equipment and financial resources required by the projects during the construction phase. To illustrate how the solution strategy works, a construction programme comprised of ten projects is considered. The projects are scheduled to maximise labour stability while simultaneously minimising time and minimising cost. The tradeoff between the values in terms of time, cost, and labour stability allows project managers to consider their preferences and identify which solution best suits their needs. Additionally, the model determines the optimal starting times for each of the projects, working patterns for the workers, and labour costs. This model shows that construction projects can be scheduled to not only benefit the project manager, but also benefit current workers and help attract new workers to the industry. Due to its practicality, it can be a valuable tool to support decision making and assist construction stakeholders when developing schedules that include social sustainability factors.Keywords: labour stability, mixed-integer programming (MIP), scheduling, workforce management
Procedia PDF Downloads 253195 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: taxi industry, decision making, recommendation system, embedding model
Procedia PDF Downloads 138194 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 142193 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance
Authors: Shazia Anwer
Abstract:
The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan
Procedia PDF Downloads 204192 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique
Authors: Manar Al-Ateeq
Abstract:
The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)
Procedia PDF Downloads 176191 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks
Procedia PDF Downloads 103190 Self-Reliant Peer Learning for Nursing Students
Authors: U.-B. Schaer, M. Wehr, R. Hodler
Abstract:
Background: Most nursing students require more training time for necessary nursing skills than defined by nursing schools curriculum to acquire basic nursing skills. Given skills training lessons are too brief to enable effective student learning, meaning in-depth skills practice and repetition various learning steps. This increases stress levels and the pressure to succeed for a nursing student with slower learning capabilities. Another possible consequence is that nursing students are less prepared in the required skills for future clinical practice. Intervention: The Bern College of Higher Education of Nursing, Switzerland, started the independent peer practice learning program in 2012. A concept was developed which defines specific aims and content as well as student’s rights and obligations. Students enlist beforehand and order the required materials. They organize themselves and train in small groups in allocated training location in the area of Learning Training and Transfer (LTT). During the peer practice, skills and knowledge can be repeatedly trained and reflected in the peer groups without the presence of a tutor. All invasive skills are practiced only on teaching dummies. This allows students to use all their potential. The students may access learning materials as literature and their own student notes. This allows nursing students to practice their skills and to deepen their knowledge on corresponding with their own learning rate. Results: Peer group discussions during the independent peer practice learning support the students in gaining certainty and confidence in their knowledge and skills. This may improve patient safety in future daily care practice. Descriptive statics show that the number of students who take advantage of the independent peer practice learning increased continuously (2012-2018). It has to be mentioned that in 2012, solely students of the first semester attended the independent peer practice learning program, while in 2018 over one-third of the participating students were in their fifth semester and final study year. It is clearly visible that the demand for independent peer practice learning is increasing. This has to be considered in the development of future teaching curricula.Keywords: learning program, nursing students, peer learning, skill training
Procedia PDF Downloads 121189 Training Student Teachers to Work in Partnership with Parents of Students with Special Needs
Authors: Alicia Greenbank, Efrat Bengio
Abstract:
The aim of this research was to examine the efficacy of the first course in Israel, whose objective is to train student teachers in the special education department to work cooperatively with parents of children with special needs. Studies often highlight the importance of cooperation between teachers and parents of students with special needs. Israel’s Special Education Law defines parents as complete partners, and the Ministry of Education encourages and even requires that partnership be present. Yet this partnership is difficult to achieve many kindergarten teachers, and teachers have a lot of difficulties establishing and managing a pattern of cooperation with their students’ parents. Often we see different perspectives on the child's development and needs, distrust, lack of appreciation, and communication difficulties on both sides – parents & teachers. The course describes a method of instilling the need for cooperation at an early stage of teacher training-in the teacher training program. 22 students in the special education program for early childhood education in the fourth year of learning took part in the course. The fourth-year is the experiential training year and the first time that students have worked in a school. The course consisted of 14 sessions. Seven parents of students with different disabilities participated at 6 of the sessions. The changes in the students' attitudes towards partnership and their ability to manage this partnership were carried out by examining the reports written by the students before the meetings with the parents and the reflections they wrote after each meeting with the parents and at the end of the course. Three themes emerged from the narrative analysis, corresponding to the three preconditions for joint activities with parents — Approach, Attitude, Appropriate Atmosphere, according to the Four A’s Model. The findings showed that a course combining meetings with parents of children with special needs offers many benefits for teacher training. The course raised student awareness of the question partnership, changed students’ approaches and attitudes towards the parents, stressed the importance of partnership, and provided students with tools for working with parents through the school. Based on the findings of this study, courses in this format can be applied in order to cooperate between teachers and parents, for example, parents of gifted children with special needs.Keywords: Partnership with parents in special education, parents of children with disabilities, parents of children with special needs, parents’ involvement in special education
Procedia PDF Downloads 188