Search results for: survey image overlaying
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7548

Search results for: survey image overlaying

7158 Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity

Authors: Javaria Farooqui

Abstract:

This study, “Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity,” traces the evolution of the concept of Danse Macabre. In Every man death takes away the sinful when they least expect it, in Solyman and Perseda everyone falls prey to death irrespective of their deeds and in Tauba-tun-Nasuh, the sinner is plagued. The climatic point in this brief research comes with the Modern texts, The Moon and Sixpence, Roohe-e-Insani and Amédéé, ou Comment s’en débarrasser, when Danse Macabre extends its boundaries, uniting the idea of creativity with death. Similarly in the visual context, Danse Macabre image, initially a horrifying idea, becomes a part of the present day comics and serves an entertaining rather than a cathartic purpose.

Keywords: Danse macabre, transmogrification, Medieval, death, character

Procedia PDF Downloads 494
7157 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 129
7156 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 125
7155 The Use of Appeals in Green Printed Advertisements: A Case of Product Orientation and Organizational Image Orientation Ads

Authors: Chutima Ruanguttamanun

Abstract:

Despite the relatively large number of studies that have examined the use of appeals in advertisements, research on the use of appeals in green advertisements is still underdeveloped and needs to be investigated further, as it is definitely a tool for marketers to create illustrious ads. In this study, content analysis was employed to examine the nature of green advertising appeals and to match the appeals with the green advertisements. Two different types of green print advertisings, product orientation and organizational image orientation were used. Thirty highly educated participants with different backgrounds were asked individually to ascertain three appeals out of thirty-four given appeals found among forty real green advertisements. To analyze participant responses and to group them based on common appeals, two-step K-mean clustering is used. The clustering solution indicates that eye-catching graphics and imaginative appeals are highly notable in both types of green ads. Depressed, meaningful and sad appeals are found to be highly used in organizational image orientation ads, whereas, corporate image, informative and natural appeals are found to be essential for product orientation ads.

Keywords: advertising appeals, green marketing, green advertisement, printed advertisement

Procedia PDF Downloads 248
7154 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 103
7153 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.

Keywords: discrete wavelet transform (DWT), contourlet transform (CT), digital image watermarking, copyright protection, geometric attack

Procedia PDF Downloads 371
7152 TACTICAL: Ram Image Retrieval in Linux Using Protected Mode Architecture’s Paging Technique

Authors: Sedat Aktas, Egemen Ulusoy, Remzi Yildirim

Abstract:

This article explains how to get a ram image from a computer with a Linux operating system and what steps should be followed while getting it. What we mean by taking a ram image is the process of dumping the physical memory instantly and writing it to a file. This process can be likened to taking a picture of everything in the computer’s memory at that moment. This process is very important for tools that analyze ram images. Volatility can be given as an example because before these tools can analyze ram, images must be taken. These tools are used extensively in the forensic world. Forensic, on the other hand, is a set of processes for digitally examining the information on any computer or server on behalf of official authorities. In this article, the protected mode architecture in the Linux operating system is examined, and the way to save the image sample of the kernel driver and system memory to disk is followed. Tables and access methods to be used in the operating system are examined based on the basic architecture of the operating system, and the most appropriate methods and application methods are transferred to the article. Since there is no article directly related to this study on Linux in the literature, it is aimed to contribute to the literature with this study on obtaining ram images. LIME can be mentioned as a similar tool, but there is no explanation about the memory dumping method of this tool. Considering the frequency of use of these tools, the contribution of the study in the field of forensic medicine has been the main motivation of the study due to the intense studies on ram image in the field of forensics.

Keywords: linux, paging, addressing, ram-image, memory dumping, kernel modules, forensic

Procedia PDF Downloads 82
7151 The Relationship of the Marketing Mix, Brand Image and Consumer Behavior of the Low-Cost Airline Service

Authors: Bundit Pungnirund

Abstract:

This research aimed to investigate the relationship between attitude towards marketing mix, brand image and consumer behavior of the passengers of low-cost airlines service. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the passengers who have ever used the low-cost airline services based in Bangkok, Thailand. The descriptive statistics and Pearson’s correlation analysis were used to analyze data. The research results revealed that the attitude of the marketing mix of the low-cost airline services including product, price, place, promotion and process had related to the consumer behavior on the aspects of duration of service and frequency of service. While, the brand image of the low cost airline including the characteristics of organization, service quality and company identity had related to the consumer behavior on duration of service, frequency of service and cost of service at the significant statistically acceptable levels.

Keywords: brand image, consumer behavior, low-cost airline, marketing mix

Procedia PDF Downloads 275
7150 Secure Image Encryption via Enhanced Fractional Order Chaotic Map

Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi

Abstract:

in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.

Keywords: image encryption, logistic map, fibonacci matrix, grayscale images

Procedia PDF Downloads 288
7149 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 394
7148 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU

Procedia PDF Downloads 269
7147 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 214
7146 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 67
7145 A Survey on Early Screen Exposure during Infancy and Autism

Authors: I. Mahmood

Abstract:

This survey was conducted to explore the hypothesis that excessive screen exposure combined with a subsequent decrease in parent-child interaction during infancy might be associated with autism. The main questions being asked are: Were children with autism exposed to long hours of screen time during the first 2 years of life? And what was the reason(s) for exposure at such an early age? Other variables were also addressed in this survey. An Arabic questionnaire was administered online (June 2019) via a Facebook page, relatively well-known in Arab countries. 1725 parents of children diagnosed with autism participated in this survey. Results show that 80.9% of children surveyed who were diagnosed with autism had been exposed to screens for long periods of time during the first 2 years of life. It can be inferred from the results of this survey that over-exposure to screens disrupt the parent-child interaction which is shown to be associated with ASD. The results of this survey highlight the harmful effects of screen exposure during infancy and the importance of parent-child interaction during the critical period of brain development. This paper attempts to further explore the connection between parent-child interaction and ASD, as well as serve as a call for further research and investigation of the relation between screens and parent-child interactions during infancy and Autism.

Keywords: attachment disorder, autism, screen exposure, virtual autism

Procedia PDF Downloads 98
7144 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 165
7143 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)

Procedia PDF Downloads 335
7142 The Role of Business Survey Measures in Forecasting Croatian Industrial Production

Authors: M. Cizmesija, N. Erjavec, V. Bahovec

Abstract:

While the European Union (EU) harmonized methodology is a benchmark of worldwide used business survey (BS) methodology, the choice of variables that are components of the confidence indicators, as the leading indicators, is not strictly determined and unique. Therefore, the aim of this paper is to investigate and to quantify the relationship between all business survey variables in manufacturing industry and industrial production as a reference macroeconomic series in Croatia. The assumption is that there are variables in the business survey, that are not components of Industrial Confidence Indicator (ICI) and which can accurately (and sometimes better then ICI) predict changes in Croatian industrial production. Empirical analyses are conducted using quarterly data of BS variables in manufacturing industry and Croatian industrial production over the period from the first quarter 2005 to the first quarter 2013. Research results confirmed the assumption: three BS variables which is not components of ICI (competitive position, demand and liquidity) are the best leading indicator then ICI, in forecasting changes in Croatian industrial production instantaneously, with one, two or three quarter ahead.

Keywords: balance, business survey, confidence indicators, industrial production, forecasting

Procedia PDF Downloads 452
7141 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 133
7140 Foggy Image Restoration Using Neural Network

Authors: Khader S. Al-Aidmat, Venus W. Samawi

Abstract:

Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.

Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration

Procedia PDF Downloads 367
7139 Major Causes of Delay in Construction Projects

Authors: Y. Gholipour, E. Rezazadeh

Abstract:

Delay is one of the most serious and common problems of construction project that can affect project delivery unfavorably. This research presents the most important causes of delay in large dam projects based on a survey on some executed dam construction in Iran. In this survey a randomly selected samples of owners, consultants and contractors have been involved. The outcome of this survey revealed that scheduled payments, site management, shop drawing review process, unforeseen ground conditions and contractor experience as the most important factors affecting on delay in dam construction projects.

Keywords: delay, dam construction, project management, Iran

Procedia PDF Downloads 419
7138 A Survey on the Status of Test Automation

Authors: Andrei Contan, Richard Torkar

Abstract:

Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain.

Keywords: survey, testing, test automation, status of test automation

Procedia PDF Downloads 623
7137 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points

Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti

Abstract:

The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.

Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points

Procedia PDF Downloads 191
7136 Effect of Threshold Configuration on Accuracy in Upper Airway Analysis Using Cone Beam Computed Tomography

Authors: Saba Fahham, Supak Ngamsom, Suchaya Damrongsri

Abstract:

Objective: The objective is to determine the optimal threshold of Romexis software for the airway volume and minimum cross-section area (MCA) analysis using Image J as a gold standard. Materials and Methods: A total of ten cone-beam computed tomography (CBCT) images were collected. The airway volume and MCA of each patient were analyzed using the automatic airway segmentation function in the CBCT DICOM viewer (Romexis). Airway volume and MCA measurements were conducted on each CBCT sagittal view with fifteen different threshold values from the Romexis software, Ranging from 300 to 1000. Duplicate DICOM files, in axial view, were imported into Image J for concurrent airway volume and MCA analysis as the gold standard. The airway volume and MCA measured from Romexis and Image J were compared using a t-test with Bonferroni correction, and statistical significance was set at p<0.003. Results: Concerning airway volume, thresholds of 600 to 850 as well as 1000, exhibited results that were not significantly distinct from those obtained through Image J. Regarding MCA, employing thresholds from 400 to 850 within Romexis Viewer showed no variance from Image J. Notably, within the threshold range of 600 to 850, there were no statistically significant differences observed in both airway volume and MCA analyses, in comparison to Image J. Conclusion: This study demonstrated that the utilization of Planmeca Romexis Viewer 6.4.3.3 within threshold range of 600 to 850 yields airway volume and MCA measurements that exhibit no statistically significant variance in comparison to measurements obtained through Image J. This outcome holds implications for diagnosing upper airway obstructions and post-orthodontic surgical monitoring.

Keywords: airway analysis, airway segmentation, cone beam computed tomography, threshold

Procedia PDF Downloads 23
7135 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 244
7134 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 287
7133 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 240
7132 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 62
7131 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 292
7130 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 124
7129 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 287