Search results for: post-editing machine translation output
4855 Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset
Authors: Asad Yousuf
Abstract:
Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting.Keywords: small field dosimetry, optically stimulated luminescence, audit treatment, radiological physics center
Procedia PDF Downloads 3274854 Impact of Output Market Participation on Cassava-Based Farming Households' Welfare in Nigeria
Authors: Seyi Olalekan Olawuyi, Abbyssiania Mushunje
Abstract:
The potential benefits of agricultural production to improve the welfare condition of smallholder farmers in developing countries is no more a news because it has been widely documented. Yet majority of these farming households suffer from shortfall in production output to meet both the consumption needs and market demand which adversely affects output market participation and by extension welfare condition. Therefore, this study investigated the impacts of output market participation on households’ welfare of cassava-based farmers in Oyo State, Nigeria. Multistage sampling technique was used to select 324 sample size used for this study. The findings from the data obtained and analyzed through composite score and crosstab analysis revealed that there is varying degree of output market participation among the farmers which also translate to the observed welfare profile differentials in the study area. The probit model analysis with respect to the selection equation identified gender of household head, household size, access to remittance, off-farm income and ownership of farmland as significant drivers of output market participation in the study area. Furthermore, the treatment effect model of the welfare equation and propensity score matching (PSM) technique were used as robust checks; and the findings attest to the fact that, complimentarily with other significant variables highlighted in this study, output market participation indeed has a significant impact on farming households’ welfare. As policy implication inferences, the study recommends female active inclusiveness and empowerment in farming activities, birth control strategies, secondary income smoothing activities and discouragement of land fragmentation habits, to boost productivity and output market participation, which by extension can significantly improve farming households’ welfare.Keywords: Cassava market participation, households' welfare, propensity score matching, treatment effect model
Procedia PDF Downloads 1624853 Thermal and Mechanical Finite Element Analysis of a Mineral Casting Machine Frame
Abstract:
Thermal distortion of the machine tool plays a critical role in its machining accuracy. This study investigates the thermal performance of a high-precision machine frame with future-oriented mineral casting components. A thermo-mechanical finite element model (FEM) was established to evaluate the thermal behavior of the frame under environmental thermal fluctuations. The validity of the presented FEM model was confirmed experimentally by a series of laser interferometer tests. Good agreement between numerical and experimental results demonstrates that the proposed model can accurately predict the thermal deformation of the frame with thermo-mechanical coupling effect. The results also show that keeping the workshop in thermally stable conditions is crucial for improving the machine accuracy of the system with large scale components. The goal of this paper is to investigate the feasibility of innovative mineral casting material applied in high-precision drilling machine and to provide a strategy for machine tool industry seeking a perfect substitute for classic frame materials such as cast iron and granite.Keywords: thermo-mechanical model, finite element method, laser interferometer, mineral casting frame
Procedia PDF Downloads 3034852 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2834851 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 744850 An Investigation of the Mystic Term on 'The Conference of the Birds' of Attar on the Basis of Van Doorslaer's Map
Authors: Saber Noie
Abstract:
This research follows some objectives to consider the mystic terms as one of the main issues in translation of poems. Firstly, it is an attempt to find out what strategies have been used to find equivalents for source text mystic. Second, it is hoped that this study of the translations of the mystic terms in Attar’s poems will further address and explore the problems in translating mystic texts, proposed by other Persian poets and suggest instructional points from Davis work for translation education. In order to deal with such a breadth of work, a new conceptual tool was developed, as explained by Van Doorslaer (2007). This study shows that according to Van Doorslaer’s map, the mystic terms can be transferred to the target language (TL) with their exact content of the source language (SL) if the translator has a good choice for any term.Keywords: metaphor, mystic, mysticism, source language (SL), target language (TL)
Procedia PDF Downloads 2574849 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 2294848 Asymmetries in Monetary Policy Response: The Role of Uncertainty in the Case of Nigeria
Authors: Elias Udeaja, Elijah Udoh
Abstract:
Exploring an extended SVAR model (SVAR-X), we use the case of Nigeria to hypothesize for the role of uncertainty as the underlying source of asymmetries in the response of monetary policy to output and inflation. Deciphered the empirical finding is the potential of monetary policy exhibiting greater sensitive to shocks due to output growth than they do to shocks due to inflation in recession periods, while the reverse appears to be the case for a contractionary monetary policy. We also find the asymmetric preference in the response of monetary policy to changes in output and inflation as relatively more pronounced when we control for uncertainty as the underlying source of asymmetries.Keywords: asymmetry response, developing economies, monetary policy shocks, uncertainty
Procedia PDF Downloads 1444847 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia PDF Downloads 1244846 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine
Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland
Abstract:
The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.Keywords: force-velocity, leg-press, power-velocity, profiling, reliability
Procedia PDF Downloads 584845 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies
Authors: Babak Mohajeri, Sen Bao, Timo Nyberg
Abstract:
Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis
Procedia PDF Downloads 3624844 Original and the Translated: A Comparative Evaluation of Native and Non-Native English Translations of Faiz
Authors: Anam Nawaz
Abstract:
The present study is an attempt to compare the translations of Faiz’s poetry made by native and non-native translators, to determine the role of the translator in terms of preserving the cultural ethos of the original text. Peter Newmark and Katharine Reiss’s approaches to translation criticism have been used to provide a theoretical framework for the study. This study also emphasizes those cultural and semantic aspects of the original which are translated more convincingly by a native translator, and contrasting those features which the non-natives can tackle more ably. The research also highlights the linguistic sockets, ignored by the interpreters in the translation process. The analysis showed that both native and non-native translators have made an admirable effort to stay as close to the original as possible. The natives with their advantage of belonging to the same culture have excelled in preserving the original subject matter, whereas the non-native renderings have been presented in a much rhythmic and poetic manner with an excellent choice of words. Though none of the four translators has been successfully able to recreate Faiz’s magic, however V. G. Kiernan and Sarvat Rahman’s translations can be regarded as the closest to the original. Whereas V. G. Kiernan with his outstanding command over English mesmerizes the readers, Sarvat Rahman’s profound understanding of cultural ties helps establish her translations as a brilliant example of faithful re-renderings.Keywords: comparative translations, linguistic and cultural constraints, native translators, non-native translators, poetry and translation, Faiz Ahmad Faiz
Procedia PDF Downloads 2614843 Auto-Tuning of CNC Parameters According to the Machining Mode Selection
Authors: Jenq-Shyong Chen, Ben-Fong Yu
Abstract:
CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality
Procedia PDF Downloads 3804842 The Challenges of Intercultural Transfer: The Italian Reception of Aotearoa/New Zealand Films
Authors: Martina Depentor
Abstract:
While the cinematic medium contributes to bringing images of a culture to foreign audiences, Audiovisual Translation contributes to deciphering those cultural representations to those same audiences. Through Audiovisual Translation, in fact, elements permeate the reception system and contribute to forging a cultural image of the original/source system in the target/reception system. By analyzing a number of Italian critical reviews, blogs and forum posts, this paper examines the impact and reception in Italy of five of the most successful and influential New Zealand films of the last two decades - An Angel at my Table (1990), The Piano (1993), Heavenly Creatures (1994), Once Were Warriors (1994), Whale Rider (2002) - with the aim of exploring how the adaptation of New Zealand films might condition the representation of New Zealand in the Italian imaginary. The analysis seeks to identify whether a certain degree of cultural loss results from the 'translation' of these films. The films selected share common ground in that they all reveal cultural, social and historical characteristics of New Zealand, from aspects that are unique to this country and that on the surface may render it difficult to penetrate (unfamiliar landscapes, aspects of indigenous culture) to more universal themes (intimate family stories, dysfunctional relationship). They contributed to situating New Zealand on an international stage and to bringing images of the country to many audiences, the Italian one included, with little previous cultural knowledge of the social and political history of New Zealand. Differences in film types pose clearly different levels of interpretative challenges to non-New Zealander audiences, and examples from the films will show how these challenges are or are not overcome if the adaptations display misinterpretations or rendition gaps, and how the process of intercultural transfer further 'domesticates' or 'exoticises' the source culture.Keywords: audiovisual translation, cultural representation, intercultural transfer, New Zealand Films
Procedia PDF Downloads 3014841 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System
Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam
Abstract:
Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)
Procedia PDF Downloads 3574840 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device
Authors: Tomotaka Aoki, Isao Tomita
Abstract:
We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio
Procedia PDF Downloads 1214839 Spatial Setting in Translation: A Comparative Evaluation of translations from Pre-Islamic Poetry
Authors: Raja Lahiani
Abstract:
This study is concerned with scrutinising translations into English and French of references to locations in the desert of pre-Islamic Arabia. These references are used in the Source Text (ST) within a poetic image. Reference is made to the names of three different mountains in Arabia, namely Qatan, Sitar, and Yadhbul. As these mountains are referred to in the context of the poet’s description of the density and expansion of the clouds, it is crucial to know that while Sitar and Yadhbul are close to each other, Qatan is far away from them. This distance was functional for the poet to describe the expansion of the clouds. This reflects the spacious place (desert) he handled, and the fact that it was possible for him to physically see what he described. The purpose of this image is for the poet to communicate the vastness of the space he managed to see as he was in a moment of contemplation. Thus, knowledge of this characteristic about the setting is capital for the receiver to understand the communicative function of the verse. A corpus of eighteen translations is gathered. These vary between verse and prose renderings. The methodology adopted in this research work is comparative. Comparison is conducted at both the synchronic and diachronic levels; every translation shall be compared to the ST and then to previous translations. The comparative work will prove at the end that the translators who target historical facts do not necessarily succeed in preserving the image of the ST. It also proves that the more recent the translation is, the deeper the translator’s awareness is the link between imagery, setting, and point of view. Since the late eighteenth century and until nowadays, pre-Islamic poetry has been translated into Western languages. Translators differ as to motives, sources, priorities and intellectual backgrounds. A translator's skopoi undoubtedly affect the way s/he handles aspects of the ST. When it comes to culture-specific aspects and details related to setting, the problem is even more complex. Setting is a very important factor that reveals a great deal of the culture of pre-Islamic Arabia as this is remote in place, historical framework and literary tradition from its translators. History is present in pre-Islamic poetry, which justifies the important literature that has been written to extract information and data from it. These are imbedded not only by signalling given facts, events, and meditations but also by means of references to specific locations and landmarks that used to exist at the time. Spatial setting is an integral part of a literary text as it places it within its historical context. The importance of the translator’s awareness of spatial anthropological data before indulging in the process of translation is tested. This is also crucial in measuring the effect of setting loss and setting gain in translation. The findings of this research would ultimately evaluate the extent to which a comparative methodology is reliable in investigating the role of spatial setting awareness in translation.Keywords: historical context, translation, comparative literature, spatial setting
Procedia PDF Downloads 2494838 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 1534837 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan
Abstract:
Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic
Procedia PDF Downloads 2544836 Cyclone Driven Variation of Chlorophyll-a Concentration in Bay of Bengal
Authors: Nowshin Nabila Siddique, S. M. Mustafizur Rahman
Abstract:
There is evidence of cyclonic events in Bay of Bengal (BoB) throughout the year. These cyclones cause a variety of fluctuations along its track including the is the influence in Chlorophyll-a (chl-a) concentration. The main purpose of this paper is to justify this variation pattern. Six Tropical Cyclones (TC) are studied using observational method. The result suggests that there is a noticeable change in productivity after a cyclone passes, when the pre cyclonic and post cyclonic condition is observed. In case of Cyclone Amphan, it shows 1.79 mg/m3 of chlorophyll-a concentration increase after a week of cyclonic occurrence. This change is affected by several attributes such as translation speed, intensity and Ocean Pre-condition, specifically Mixed Layer Depth (MLD). Translation Speed and MLD shows a strong negative correlation with the induced chlorophyll concentration. Whereas the effect of the intensity on a cyclone is not that prominent. It is also found that the period of starting an induction is not same for all cyclone such as in case of Cyclone Amphan, the changes started to occur after one day however for Cyclone Sidr and Cyclone Mora it started after three days. Furthermore, a slightly increase in overall productivity is also observed after a cyclone. In the case of Cyclone Amphan, Hudhud, Phailin it shows a rise up to 0.12 mg/m3 in productivity which decreases gradually taking around the period of two months. On a whole this paper signifies the changes in chlorophyll concentration caused by numerous cyclones and its different characteristics that regulates these changes.Keywords: tropical cyclone, chlorophyll-a concentration, mixed layer depth, translation speed
Procedia PDF Downloads 884835 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 3764834 Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation
Authors: Muhaned Zaidi, Ian Grout, Abu Khari bin A’ain
Abstract:
In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process.Keywords: op-amp, rail-to-rail output, Miller compensation, Negative Miller capacitance
Procedia PDF Downloads 3384833 Air Quality Analysis Using Machine Learning Models Under Python Environment
Authors: Salahaeddine Sbai
Abstract:
Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.Keywords: air quality, machine learning models, pollution, pollutant emissions
Procedia PDF Downloads 914832 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3034831 Predictive Output Feedback Linearization for Safe Control of Collaborative Robots
Authors: Aliasghar Arab
Abstract:
Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better.Keywords: robotics, collaborative robots, safety, autonomous robots
Procedia PDF Downloads 974830 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 954829 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 2514828 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2154827 Volume Density of Power of Multivector Electric Machine
Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev
Abstract:
Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor
Procedia PDF Downloads 3384826 Teaching English to Engineers: Between English Language Teaching and Psychology
Authors: Irina-Ana Drobot
Abstract:
Teaching English to Engineers is part of English for Specific Purposes, a domain which is under the attention of English students especially under the current conditions of finding jobs and establishing partnerships outside Romania. The paper will analyse the existing textbooks together with the teaching strategies they adopt. Teaching English to Engineering students can intersect with domains such as psychology and cultural studies in order to teach them efficiently. Textbooks for students of ESP, ranging from those at the Faculty of Economics to those at the Faculty of Engineers, have shifted away from using specialized vocabulary, drills for grammar and reading comprehension questions and toward communicative methods and the practical use of language. At present, in Romania, grammar is neglected in favour of communicative methods. The current interest in translation studies may indicate a return to this type of method, since only translation specialists can distinguish among specialized terms and determine which are most suitable in a translation. Engineers are currently encouraged to learn English in order to do their own translations in their own field. This paper will analyse the issue of the extent to which it is useful to teach Engineering students to do translations in their field using cognitive psychology applied to language teaching, including issues such as motivation and social psychology. Teaching general English to engineering students can result in lack of interest, but they can be motivated by practical aspects which will help them in their field. This is why this paper needs to take into account an interdisciplinary approach to teaching English to Engineers.Keywords: cognition, ESP, motivation, psychology
Procedia PDF Downloads 263