Search results for: parameter estimation
3374 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm
Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao
Abstract:
In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.Keywords: SEDREAMS, GCI, SBC, GOI
Procedia PDF Downloads 3573373 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques
Procedia PDF Downloads 1893372 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix
Procedia PDF Downloads 3593371 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft
Authors: Arun Prasath Subramanian
Abstract:
The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling
Procedia PDF Downloads 3213370 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 3583369 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 583368 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 2643367 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems
Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune
Abstract:
This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction
Procedia PDF Downloads 1463366 Internet of Things based AquaSwach Water Purifier
Authors: Karthiyayini J., Arpita Chowdary Vantipalli, Darshana Sailu Tanti, Malvika Ravi Kudari, Krtin Kannan
Abstract:
This paper is propelled from the generally existing undertaking of the smart water quality management, which addresses an IoT (Internet of things) based brilliant water quality observing (SWQM) framework which we call it AquaSwach that guides in the ceaseless estimation of water conditions dependent on five actual boundaries i.e., temperature, pH, electric conductivity and turbidity properties and water virtue estimation each time you drink water. Six sensors relate to Arduino-Mega in a discrete way to detect the water parameters. Extracted data from the sensors are transmitted to a desktop application developed in the NET platform and compared with the WHO (World Health Organization) standard values.Keywords: AquaSwach, IoT, WHO, water quality
Procedia PDF Downloads 2143365 Long Term Examination of the Profitability Estimation Focused on Benefits
Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke
Abstract:
Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.Keywords: cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis
Procedia PDF Downloads 4453364 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1423363 Hydrological, Hydraulics, Analysis and Design of the Aposto –Yirgalem Road Upgrading Project, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to analyze and identify the drainage pattern and catchment characteristics of the river basin and assess the impact of the hydrologic parameters (catchment area, rainfall intensity, runoff coefficient, land use, and soil type) on the referenced study area. Since there is no river gauging station near the road, even for large rivers, rainfall-runoff models are adopted for flood estimation, i.e., for catchment areas less than 50 ha, the rational method is used; for catchment areas, less than 65 km², the SCS unit hydrograph method is used; and for catchment areas greater than 65 km², HEC-HMS is adopted for flood estimation.Keywords: Arc GIS, catchment area, land use/land cover, peak flood, rainfall intensity
Procedia PDF Downloads 373362 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks
Authors: Kai-Wei Ji, Dung-Ying Lin
Abstract:
This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.Keywords: demand estimation, genetic algorithm, housing price, transportation
Procedia PDF Downloads 223361 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 4103360 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 833359 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 1933358 Directed-Wald Test for Distinguishing Long Memory and Nonlinearity Time Series: Power and Size Simulation
Authors: Heri Kuswanto, Philipp Sibbertsen, Irhamah
Abstract:
A Wald type test to distinguish between long memory and ESTAR nonlinearity has been developed. The test uses a directed-Wald statistic to overcome the problem of restricted parameters under the alternative. The test is derived from a model specification i.e. allows the transition parameter to appear as a nuisance parameter in the transition function. A simulation study has been conducted and it indicates that the approach leads a test with good size and power properties to distinguish between stationary long memory and ESTAR.Keywords: directed-Wald test, ESTAR, long memory, distinguish
Procedia PDF Downloads 4833357 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 2753356 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.Keywords: exponential smoothing method, open data, operation estimation, train schedule
Procedia PDF Downloads 3883355 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3783354 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1973353 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5423352 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 1613351 Prey-Predator Eco-Epidemiological Model with Nonlinear Transmission Disease
Authors: Qamar J. A. Khan, Fatma Ahmed Al Kharousi
Abstract:
A prey-predator eco-epidemiological model is studied where transmission of the disease between infected and uninfected prey is nonlinear. The interaction of the predator with infected and uninfected prey species depend on their numerical superiority. Harvesting of both uninfected and infected prey is considered. Stability analysis is carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation parameter it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical results for different set of parameters.Keywords: bifurcation, optimal harvesting, predator, prey, stability
Procedia PDF Downloads 3033350 On Periodic Integer-Valued Moving Average Models
Authors: Aries Nawel, Bentarzi Mohamed
Abstract:
This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data
Procedia PDF Downloads 2033349 Frustration Measure for Dipolar Spin Ice and Spin Glass
Authors: Konstantin Nefedev, Petr Andriushchenko
Abstract:
Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.Keywords: frustrations, parameter of order, statistical physics, magnetism
Procedia PDF Downloads 1703348 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces
Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur
Abstract:
In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.Keywords: aerodynamic, bi-dimensional, vegetation, synergistic
Procedia PDF Downloads 2703347 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor
Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park
Abstract:
The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder
Procedia PDF Downloads 3383346 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex
Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu
Abstract:
This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.Keywords: aeromagnetic, basement complex, meta-sediment, precambrian
Procedia PDF Downloads 4303345 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population
Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly
Abstract:
Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia
Procedia PDF Downloads 174