Search results for: paint coating thickness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2277

Search results for: paint coating thickness

1887 Growth Model and Properties of a 3D Carbon Aerogel

Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler

Abstract:

Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.

Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness

Procedia PDF Downloads 153
1886 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 276
1885 Some Investigations of Primary Slurry Used for Production of Ceramic Shells

Authors: Balwinder Singh

Abstract:

In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration.

Keywords: ceramic shell, primary slurry, filler, slurry viscosity, surface roughness

Procedia PDF Downloads 473
1884 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 569
1883 Influence of Graphene Content on Corrosion Behavior of Electrodeposited Zinc–Graphene Composite Coatings

Authors: Bin Yang, Xiaofang Chen, Guangxin Wang

Abstract:

Zinc coating as a sacrificial protection plays an important role in the traditional steel anticorrosion field. Adding second-phase reinforcement particles into zinc matrix is an interesting approach to further enhance its corrosion performance. In this paper, pure Zn and Zn–graphene composite coatings of different graphene contents were prepared by direct current electrodeposition on 304 stainless steel substrate. The coatings were characterized by XRD, SEM/EDS, and Raman spectroscopy. Tafel polarization and electrochemical impedance spectroscopic methods were used to study their corrosion behavior. Result obtained have shown that the concentration of grapheme oxide (GO) in zinc sulfate bath has an important effect on textured structure and surface morphology of Zn–graphene composite coatings. The coating prepared with 1.0g/L GO has shown the best corrosion resistance compared to other coatings prepared in this study.

Keywords: Zn-graphene coatings, electrodeposition, microstructure, corrosion behavior

Procedia PDF Downloads 258
1882 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin

Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy

Abstract:

Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.

Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification

Procedia PDF Downloads 358
1881 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review

Authors: Biruk Abate

Abstract:

Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.

Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface

Procedia PDF Downloads 128
1880 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy

Authors: Murtada Ahmed Oshi, Jin-Wook Yoo

Abstract:

Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.

Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes

Procedia PDF Downloads 194
1879 Effect of Wetting Layer on the Energy Spectrum of One-Electron Non-Uniform Quantum Ring

Authors: F. A. Rodríguez-Prada, W Gutierrez, I. D. Mikhailov

Abstract:

We study the spectral properties of one-electron non-uniform crater-shaped quantum dot whose thickness is increased linearly with different slopes in different radial directions between the central hole and the outer border and which is deposited over thin wetting layer in the presence of the external vertically directed magnetic field. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron confined in such structure in the zero magnetic field case can be found exactly in an analytical form and they can be used subsequently as the base functions in framework of the exact diagonalization method to study the effect of the wetting layer and an external magnetic field applied along of the grown axis on energy levels of one-electron non-uniform quantum dot. It is shown that both the structural non-uniformity and the increase of the thickness of the wetting layer provide a quenching of the Aharonov-Bohm oscillations of the lower energy levels.

Keywords: electronic properties, quantum rings, volcano shaped, wetting layer

Procedia PDF Downloads 383
1878 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: impulsive loaded plates, dynamic analysis, ABAQUS, material nonlinearity

Procedia PDF Downloads 521
1877 A Computational Diagnostics for Dielectric Barrier Discharge Plasma

Authors: Zainab D. Abd Ali, Thamir H. Khalaf

Abstract:

In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon).

Keywords: computational diagnostics, Boltzmann equation, electric discharge, electron density

Procedia PDF Downloads 776
1876 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films

Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode

Abstract:

This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.

Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant

Procedia PDF Downloads 415
1875 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: fuzzy goal programming, control charts, process capability, tablet optimization

Procedia PDF Downloads 269
1874 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation

Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang

Abstract:

Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.

Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating

Procedia PDF Downloads 155
1873 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 211
1872 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 129
1871 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme

Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim

Abstract:

Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.

Keywords: functionally graded plate, thermal buckling analysis, neutral surface

Procedia PDF Downloads 400
1870 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique

Authors: Bhupendra G. Prajapati, Alpesh R. Patel

Abstract:

The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.

Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design

Procedia PDF Downloads 135
1869 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 149
1868 Income Inequality and Its Effects on Household Livelihoods in Parker Paint Community, Liberia

Authors: Robertson Freeman

Abstract:

The prime objective of this research is to examine income inequality and its effects on household livelihoods in Parker Paint. Many researchers failed to address the potential threat of income inequality on diverse household livelihood indicators, including health, food, housing, transport and many others. They examine and generalize the effects of income differentials on household livelihoods by addressing one indicator of livelihood security. This research fills the loopholes of previous research by examining the effects of income inequality and how it affects the livelihoods of households, taking into consideration livelihood indicators including health, food security, and transport. The researcher employed the mixed research method to analyze the distribution of income and solicit opinions of household heads on the effects of their monthly income on their livelihoods. Age and sex structure, household composition, type of employment and educational status influence income inequality. The level of income, Lorenz curve and the Gini coefficient was mutually employed to calculate and determine the level of income inequality. One hundred eighty-two representing 96% of household heads are employed while 8, representing 4%, are unemployed. However, out of a total number of 182 employed, representing 96%, 27 people representing 14%, are employed in the formal private sector, while 110, representing 58%, are employed in the private informal sector. Monthly average income, savings, investments and unexpected circumstances affect the livelihood of households. Infrastructural development and wellbeing should be pursued by reducing expenditure earmarked in other sectors and channeling the funds towards the provision of household needs. One of the potent tools for consolidating household livelihoods is to initiate livelihood empowerment programs. Government and private sector agencies should establish more health insurance schemes, providing mosquito nets, immunization services, public transport, as well as embarking on feeding programs, especially in the remote areas of Parker paint. To climax the research findings, self-employment, entrepreneurship and the general private sector employment is a transparent double-edged sword. If employed in the private sector, there is the likelihood to increase one’s income. However, this also induces the income gap between the rich and poor since many people are exploited by affluence, thereby relegating the poor from the wealth hierarchy. Age and sex structure, as well as type of employment, should not be overlooked since they all play fundamental roles in influencing income inequality. Savings and investments seem to play a positive role in reducing income inequality. However, savings and investment in this research affect livelihoods negatively. It behooves mankind to strive and work hard to the best of ability in earning sufficient income and embracing measures to retain his financial strength. In so doing, people will be able to provide basic household needs, celebrate the reduction in unemployment and dependence and finally ensure sustainable livelihoods.

Keywords: income, inequality, livelihood, pakerpaint

Procedia PDF Downloads 124
1867 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 94
1866 Comparison Between Partial Thickness Skin Graft Harvesting From Scalp and Lower Limb for Scalp Defect

Authors: Mehrdad Taghipour, Mina Rostami, Mahdi Eskandarlou

Abstract:

Partial-thickness skin graft is the cornerstone for scalp defect repair. Given the potential side effects following harvesting from these sites, this study aimed to compare the outcomes of graft harvesting from scalp and lower limb. This clinical trial was conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to Plastic Surgery Clinic at Besat Hospital, Hamadan, Iran during 2018-2019. Sampling was done by simple randomization using random digit table. The donor site in case group and control group was scalp and lower limb respectively. Overall, 28 patients (70%) were male and 12 (30%) were female. Basal cell carcinoma (BCC) and trauma were the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The mean diameter of defect was 24.28±45.37 mm for all of the patients. The difference between diameters of defect in both groups were statistically meaningful while no such difference between graft diameters was seen. The graft “Take” was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale and the satisfaction was higher in them per Likert scale. Scalp can safely be used as donor site for skin graft to be used for scalp defects associated with better results and lower complication rates compared to other donor sites.

Keywords: donor site, graft, scalp, partial thickness

Procedia PDF Downloads 87
1865 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 118
1864 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 612
1863 A Comparative Analysis of Traditional and Advanced Methods in Evaluating Anti-corrosion Performance of Sacrificial and Barrier Coatings

Authors: Kazem Sabet-Bokati, Ilia Rodionov, Marciel Gaier, Kevin Plucknett

Abstract:

Protective coatings play a pivotal role in mitigating corrosion and preserving the integrity of metallic structures exposed to harsh environmental conditions. The diversity of corrosive environments necessitates the development of protective coatings suitable for various conditions. Accurately selecting and interpreting analysis methods is crucial in identifying the most suitable protective coatings for the various corrosive environments. This study conducted a comprehensive comparative analysis of traditional and advanced methods to assess the anti-corrosion performance of sacrificial and barrier coatings. The protective performance of pure epoxy, zinc-rich epoxy, and cold galvanizing coatings was evaluated using salt spray tests, together with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The performance of each coating was thoroughly differentiated under both atmospheric and immersion conditions. The distinct protective performance of each coating against atmospheric corrosion was assessed using traditional standard methods. Additionally, the electrochemical responses of these coatings in immersion conditions were systematically studied, and a detailed discussion on interpreting the electrochemical responses is provided. Zinc-rich epoxy and cold galvanizing coatings offer superior anti-corrosion performance against atmospheric corrosion, while the pure epoxy coating excels in immersion conditions.

Keywords: corrosion, barrier coatings, sacrificial coatings, salt-spray, EIS, polarization

Procedia PDF Downloads 63
1862 Acid Mine Drainage Remediation Using Silane and Phosphate Coatings

Authors: M. Chiliza, H. P. Mbukwane, P Masita, H. Rutto

Abstract:

Acid mine drainage (AMD) one of the main pollutants of water in many countries that have mining activities. AMD results from the oxidation of pyrite and other metal sulfides. When these metals gets exposed to moisture and oxygen, leaching takes place releasing sulphate and Iron. Acid drainage is often noted by 'yellow boy,' an orange-yellow substance that occurs when the pH of acidic mine-influenced water raises above pH 3, so that the previously dissolved iron precipitates out. The possibility of using environmentally friendly silane and phosphate based coatings on pyrite to remediate acid mine drainage and prevention at source was investigated. The results showed that both coatings reduced chemical oxidation of pyrite based on Fe and sulphate release. Furthermore, it was found that silane based coating performs better when coating synthesis take place in a basic hydrolysis than in an acidic state.

Keywords: acid mine drainage, pyrite, silane, phosphate

Procedia PDF Downloads 340
1861 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 348
1860 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple

Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, pineapple, microbial decay

Procedia PDF Downloads 54
1859 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple

Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils, thymol, carvone, and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5, and 1.0%) on the quality changes of fresh-cut pineapple was investigated. Pineapple dipped in distilled water was served as control. After coating, the fruit was sealed in a modified atmosphere package (MAP) using high permeable film and stored at 5°C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased, and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 56
1858 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling

Authors: Xue Ma, Yang Fu, Dangyuan Lei

Abstract:

Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.

Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling

Procedia PDF Downloads 81