Search results for: optical coherence angio tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2224

Search results for: optical coherence angio tomography

1834 Chromite Exploration Using Electrical Resistivity Tomography in Ingessana Hill, Blue Nile State, Sudan

Authors: Mohamed A. Mohamed-Ali, Jannis Simos, Khalid M. Kheiralla

Abstract:

The Ingessana hills in the southern Blue Nile of Sudan are part of the southern sector of the NE-SW trending ophiolithic belt of the Arab-Nubian Shield with mid-neoproterozoic age. The rocks are mainly serpentinized and in parts highly silicified dunites especially towards the contact with the intruding Bau granite. A promising chromite mineralization zones in the area tend to be generally associated with NE-SW trending shear-zones. A detailed geophysical survey employing electrical resistivity tomography (ERT) at 34 lines were carried out over a zone of a known chromite mineralization to test feasibility of detecting and delineating the ore (if exist) and accordingly facilitate the positioning of exploratory drill holes. ERT sections were inverted with smooth constraints inversion code where the contacts between the granite and the ultramafics are showing up clearly. The continuity of mineralization along the contact is not well confirmed. However, the low-resistivity anomalies are probably recognized as potential chromite mineralization zones. These anomalies represent prime targets for further exploration by drilling, trenching or shallow pits. If the results of the drilling or excavations are positive, small open pit exploitations may produce important tonnages of chromite.

Keywords: chromite exploration, ERT, Ingessana Hills, inversion

Procedia PDF Downloads 362
1833 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application

Authors: Hailu Dessalegn, T. Srinivas

Abstract:

We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.

Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer

Procedia PDF Downloads 417
1832 Efficacy of Mitomycin C in Reducing Recurrence of Anterior Urethral Stricture after Internal Optical Urethrotomy

Authors: Liaqat Ali, Ehsan, Muhammad Shahzad, Nasir Orakzai

Abstract:

Introduction: Internal optical urethrotomy is the main stay treatment modality in management of urethral stricture. Being minimal invasive with less morbidity, it is commonly performed and favored procedure by urologists across the globe. Although short-term success rate of optical urethrotomy is promising but long-term efficacy of IOU is questionable with high recurrence rate in different studies. Numerous techniques had been adopted to reduce the recurrence after IOU like prolong catheterization and self-clean intermittent catheterization with varying success. Mitomycin C has anti-fibroblast and anti-collagen properties and has been used in trabeculectomy, myringotomy and after keloid scar excision in contemporary surgical practice. Present study according to the best of our knowledge is a pioneer pilot study in Pakistan to determine the efficacy of Mitomycin C in preventing recurrence of urethral stricture after internal optical urethrotomy. Objective: To determine the efficacy of Mitomycin C in reducing the recurrence of anterior urethral stricture after internal optical urethrotomy. Methods: It is a randomized control trial conducted in department of urology, Institute of Kidney Diseases Hayatabad Medical Complex Peshawar from March 2011 till December 2013. After approval of hospital ethical committee, we included maximum of 2 cm anterior urethral stricture irrespective of etiology. Total of 140 patients were equally divided into two groups by lottery method. Group A (Case) comprising of 70 patients in whom Mitomycin C 0.1% was injected sub mucosal in stricture area at 1,11,6 and 12 O clock position using straight working channel paediatric cystoscope after conventional optical urethrotomy. Group B (Control) 70 patients in whom only optical urethrotomy was performed. SCIC was not offered in both the groups. All the patients were regularly followed on a monthly basis for 3 months then three monthly for remaining 9 months. Recurrence was diagnosed by using diagnostic tools of retrograde urethrogram and flexible urethroscopy in selected cased. Data was collected on structured Proforma and was analyzed on SPSS. Result: The mean age in Group A was 33 ±1.5 years and Group B was 35 years. External trauma was leading cause of urethral stricture in both groups 46 (65%) Group A and 50 (71.4%) Group B. In Group A. Iatrogenic urethral trauma was 2nd etiological factor in both groups. 18(25%) Group A while 15( 21.4%) in Group B. At the end of 1 year, At the end of one year, recurrence of urethral stricture was recorded in 11 (15.71%) patient in Mitomycin C Group A and it was recorded in 27 (38.5 %) patients in group B. Significant difference p=0.001 was found in favour of group A Mitomycin group. Conclusion: Recurrence of urethral stricture is high after optical urethrotomy. Mitomycin C is found highly effective in preventing recurrence of urethral stricture after IOU.

Keywords: urethral stricture, mitomycine, internal optical urethrotomy, medical and health sciences

Procedia PDF Downloads 364
1831 Predictive Value of ¹⁸F-Fdg Accumulation in Visceral Fat Activity to Detect Colorectal Cancer Metastases

Authors: Amil Suleimanov, Aigul Saduakassova, Denis Vinnikov

Abstract:

Objective: To assess functional visceral fat (VAT) activity evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in colorectal cancer (CRC). Materials and methods: We assessed 60 patients with histologically confirmed CRC who underwent 18F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVmax) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also report the best areas under the curve (AUC) for SUVmax with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted for age regression models and ROC analysis, 18F-FDG accumulation in RLH (cutoff SUVmax 0.74; Se 75%; Sp 61%; AUC 0.668; p = 0.049), RU (cutoff SUVmax 0.78; Se 69%; Sp 61%; AUC 0.679; p = 0.035), RRL (cutoff SUVmax 1.05; Se 69%; Sp 77%; AUC 0.682; p = 0.032) and RRI (cutoff SUVmax 0.85; Se 63%; Sp 61%; AUC 0.672; p = 0.043) could predict later metastases in CRC patients, as opposed to age, sex, primary tumor location, tumor grade and histology. Conclusions: VAT SUVmax is significantly associated with later metastases in CRC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, colorectal cancer, predictive value

Procedia PDF Downloads 99
1830 Theoretical Analysis of the Optical and Solid State Properties of Thin Film

Authors: E. I. Ugwu

Abstract:

Theoretical analysis of the optical and Solid State properties of ZnS thin film using beam propagation technique in which a scalar wave is propagated through the material thin film deposited on a substrate with the assumption that the dielectric medium is section into a homogenous reference dielectric constant term, and a perturbed dielectric term, representing the deposited thin film medium is presented in this work. These two terms, constitute arbitrary complex dielectric function that describes dielectric perturbation imposed by the medium of for the system. This is substituted into a defined scalar wave equation in which the appropriate Green’s Function was defined on it and solved using series technique. The green’s value obtained from Green’s Function was used in Dyson’s and Lippmann Schwinger equations in conjunction with Born approximation method in computing the propagated field for different input regions of field wavelength during which the influence of the dielectric constants and mesh size of the thin film on the propagating field were depicted. The results obtained from the computed field were used in turn to generate the data that were used to compute the band gaps, solid state and optical properties of the thin film such as reflectance, Transmittance and reflectance with which the band gap obtained was found to be in close approximate to that of experimental value.

Keywords: scalar wave, optical and solid state properties, thin film, dielectric medium, perturbation, Lippmann Schwinger equations, Green’s Function, propagation

Procedia PDF Downloads 415
1829 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 34
1828 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 66
1827 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens

Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu

Abstract:

A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.

Keywords: ball lens, quadrant detector, axial error, radial error

Procedia PDF Downloads 445
1826 Radiation Stability of Pigment ZnO Modified by Nanopowders

Authors: Chundong Li, V. V. Neshchimenko, M. M. Mikhailov

Abstract:

The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range.

Keywords: irradiation, nanopowders, radiation stability, zinc oxide

Procedia PDF Downloads 405
1825 Crystallization in the TeO2 - Ta2O5 - Bi2O3 System: From Glass to Anti-Glass to Transparent Ceramic

Authors: Hasnaa Benchorfi

Abstract:

The Tellurite glasses exhibit interesting properties, notably their low melting point (700-900°C), high refractive index (≈2), high transparency in the infrared region (up to 5−6 μm), interesting linear and non-linear optical properties and high rare earth ions solubility. These properties give tellurite glasses a great interest in various optical applications. Transparent ceramics present advantages compared to glasses, such as improved mechanical, thermal and optical properties. But, the elaboration process of these ceramics requires complex sintering conditions. The full crystallization of glass into transparent ceramics is an alternative to circumvent the technical challenges related to the ceramics obtained by conventional processing. In this work, a crystallization study of a specific glass composition in the system TeO2-Ta2O5-Bi2O3 shows structural transitions from the glass to the stabilization of an unreported anti-glass phase to a transparent ceramic upon heating. An anti-glass is a material with a cationic long-range order and a disordered anion sublattice. Thus, the X-ray diffraction patterns show sharp peaks, while the Raman bands are broad and similar to those of the parent glass. The structure and microstructure of the anti-glass and corresponding ceramic were characterized by Powder X-Ray Diffraction, Electron Back Scattered Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of the Er3+-doped samples are also discussed.

Keywords: glass, congruent crystallization, anti-glass, glass-ceramic, optics

Procedia PDF Downloads 56
1824 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposites Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

We report a systematic study of structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films are performed. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method, confirms that the prepared pure ZnO and Pr-doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in the sheet-like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr-doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties, free standing film

Procedia PDF Downloads 447
1823 Fokas-Lenells Equation Conserved Quantities and Landau-Lifshitz System

Authors: Riki Dutta, Sagardeep Talukdar, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

Fokas-Lenells equation (FLE) is one of the integrable nonlinear equations use to describe the propagation of ultrashort optical pulses in an optical medium. A 2x2 Lax pair has been introduced for the FLE and from that solving the Riccati equation yields infinitely many conserved quantities. Thereafter for a new field function (S) of the Landau-Lifshitz (LL) system, a gauge equivalence of the FLE with the generalised LL equation has been derived. We hope our findings are useful for the application purpose of FLE in optics and other branches of physics.

Keywords: conserved quantities, fokas-lenells equation, landau-lifshitz equation, lax pair

Procedia PDF Downloads 82
1822 A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures

Authors: A. Bouriche, D. Merah, L.Alachaher-Bedjaoui, U. Maschke

Abstract:

Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.

Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation

Procedia PDF Downloads 309
1821 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 33
1820 Taleb's Complexity Theory Concept of 'Antifragility' Has a Significant Contribution to Make to Positive Psychology as Applied to Wellbeing

Authors: Claudius Peter Van Wyk

Abstract:

Given the increasingly manifest phenomena, as described in complexity theory, of volatility, uncertainty, complexity and ambiguity (VUCA), Taleb's notion of 'antifragility, has a significant contribution to make to positive psychology applied to wellbeing. Antifragility is argued to be fundamentally different from the concepts of resiliency; as the ability to recover from failure, and robustness; as the ability to resist failure. Rather it describes the capacity to reorganise in the face of stress in such a way as to cope more effectively with systemic challenges. The concept, which has been applied in disciplines ranging from physics, molecular biology, planning, engineering, and computer science, can now be considered for its application in individual human and social wellbeing. There are strong correlations to Antonovsky's model of 'salutogenesis' in which an attitude and competencies are developed of transforming burdening factors into greater resourcefulness. We demonstrate, from the perspective of neuroscience, how technology measuring nervous system coherence can be coupled to acquired psychodynamic approaches to not only identify contextual stressors, utilise biofeedback instruments for facilitating greater coherence, but apply these insights to specific life stressors that compromise well-being. Employing an on-going case study with BMW South Africa, the neurological mapping is demonstrated together with 'reframing' and emotional anchoring techniques from neurolinguistic programming. The argument is contextualised in the discipline of psychoneuroimmunology which describes the stress pathways from the CNS and endocrine systems and their impact on immune function and the capacity to restore homeostasis.

Keywords: antifragility, complexity, neuroscience, psychoneuroimmunology, salutogenesis, volatility

Procedia PDF Downloads 347
1819 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 51
1818 A Rare Case of Taenia solium Induced Ileo-Cecal Intussusception in an Adult

Authors: Naraporn Taemaitree, Pruet Areesawangvong, Satchachon Changthom, Tanin Titipungul

Abstract:

Adult intussusception, unlike childhood intussusception, is rare. Approximately 5-15% of cases are idiopathic without a lead point lesion. Secondary intussusception is caused by pathological conditions such as inflammatory bowel disease, postoperative adhesions, Meckel’s diverticulum, benign and malignant lesions, metastatic neoplasms, or even iatrogenically due to the presence of intestinal tubes, jejunostomy feeding tubes or after gastric surgery. Diagnosis can be delayed because of its longstanding, intermittent, and non-specific symptoms. Computed tomography is the most sensitive diagnostic modality and can help distinguish between intussusceptions with and without a lead point and lesion localization. This report presents the case of a 49-year-old man presented with increasing abdominal pain over the past three days, loss of appetite, constipation, and frequent vomiting. Computed tomography revealed distal small bowel obstruction at the right lower quadrant with thickened outer wall and internal non-dilated small bowel loop. Emergency exploratory laparotomy was performed to clear the obstruction, which upon inspection was caused by extremely long Taenia solium parasites.

Keywords: intussusception, tape worm, Taenia solium, abdominal pain

Procedia PDF Downloads 106
1817 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

Authors: Barun Raychaudhuri

Abstract:

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Keywords: hyperion, hyperspectral, Kolkata, water depth

Procedia PDF Downloads 229
1816 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures

Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke

Abstract:

Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.

Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation

Procedia PDF Downloads 271
1815 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case

Authors: R. Horchani

Abstract:

Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.

Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling

Procedia PDF Downloads 275
1814 InP/ZnS Core-Shell and InP/ZnS/ZnS Core-Multishell Quantum Dots for Improved luminescence Efficiency

Authors: Imen Harabi, Hanae Toura, Safa Jemai, Bernabe Mari Soucase

Abstract:

A promising alternative to traditional Quantum Dots QD materials, which contain toxic heavy elements such as lead and cadmium, sheds light on indium phosphide quantum dots (InP QDs) Owing to improve the quantum yields of photoluminescence and other properties. InP, InP/ZnS core/shell and InP/ZnS/ZnS core/shell/shell Quantum Dots (QDs) were synthetized by the hot injection method. The optical and structural properties of the core InP QDs, InP/ZnS QDs, and InP/ZnS/ZnS QDs have being considered by several techniques such as X-ray diffraction, transmission electron microscopy, optical spectroscopy, and photoluminescence. The average diameter of InP, InP/ZnS, and InP/ZnS/ZnS Quantum Dots (QDs) was varying between 10 nm, 5.4 nm, and 4.10 nm. This experience revealed that the surface morphology of the Quantum Dots has a more regular spherical form with color variation of the QDs in solution. The emission peak of colloidal InP Quantum Dots was around 530 nm, while in InP/ZnS, the emission peak is displayed and located at 598 nm. whilst for InP/ZnS/ZnS is placed at 610 nm. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. Add the XRD information FWHM of the principal peak of InP QDs was 63 nm, while for InP/ZnS was 41 nm and InP/ZnS/ZnS was 33 nm. The effect of the Zinc stearate precursor concentration on the optical, structural, surface chemical of InP and InP/ZnS and InP/ZnS/ZnS QDs will be discussed.

Keywords: indium phosphide, quantum dot, nanoparticle, core-shell, multishell, luminescence

Procedia PDF Downloads 137
1813 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives

Authors: Archana Gupta, Rajesh Kumar

Abstract:

The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.

Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations

Procedia PDF Downloads 211
1812 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 370
1811 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)

Procedia PDF Downloads 496
1810 Sol-Gel Derived ZnO Nanostructures: Optical Properties

Authors: Sheo K. Mishra, Rajneesh K. Srivastava, R. K. Shukla

Abstract:

In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications.

Keywords: ZnO, sol-gel, XRD, PL

Procedia PDF Downloads 371
1809 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 109
1808 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.

Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties

Procedia PDF Downloads 53
1807 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 658
1806 PET Image Resolution Enhancement

Authors: Krzysztof Malczewski

Abstract:

PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity.

Keywords: PET, super-resolution, image reconstruction, pattern recognition

Procedia PDF Downloads 348
1805 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 22