Search results for: metal music
2637 Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe
Authors: Ertuğ Yıldırım, Dile Kara, Salih Zeki Yıldız
Abstract:
Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties.Keywords: Schiff base ligands, crystal engineering, fluorescence properties, Metal Containing Polymers (MCPs)
Procedia PDF Downloads 3472636 An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals
Authors: A. Szabó Nagy, J. Szabó, I. Vass
Abstract:
Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples.Keywords: surface water, sediment, PAH, trace metal
Procedia PDF Downloads 3152635 Effect of Globalization on Flow Performance in Godean Jathilan Pranesa Yogyakarta
Authors: Maria Armalita Tumimbang
Abstract:
Jathilan or Kuda Lumping is a dance-drama with warfare as the main theme and the dancers mimicking mighty horsemen armed with sword in the middle of the battle field. However, to most people this dance-drama is more identical with magical nuanced dance and trance, beside the attractive and even dangerous acts of the dancers, such as eating shard or broken glass in a state of trance. Several music players play the accompaniment made up of incomplete gamelan set that include saron, kendang, gong, and kempul. In general, it remains unchanged with regards to the seemingly monotonous beat and occasional “bumps” that may lead the dancers into a trance state. The dances performed also tend to be of repetitive patterns. The development of Jathilan and other traditional art performance in this globalization and industrialization era can be divided into two: firstly, they are subjected to the power of industrialization, which means their performances are to be recorded for commercial purpose, and secondly, they are to be presented in live performances. To some people, live performances are preferable, and for some reasons, they represent a form of cultural résistance to globalization and industrialization. The present study is qualitative in nature. It aims to describe the music and performance of Jathilan in the era of globalization in Indonesia. The subject of this study is a traditional art group, Jathilan Kuda Pranesa of Godean, Yogyakarta. Data collection was conducted by interviews with the leader of the group, the dancers and music players, as well as the audience. The wave of globalization has brought strong capitalistic industrialization that render traditional arts simply into industrial commodities tailored to the need of the era. This very fact has made the repositioning of traditional art performance of Jathilan a necessity. And by repositioning we mean that Jathilans should be put back to their traditional forms and functions as they used to be.Keywords: Jathilan, globalization, industrialization, music, performance
Procedia PDF Downloads 3062634 New Restoration Reagent for Development of Erased Serial Number on Copper Metal Surface
Authors: Lav Kesharwani, Nalini Shankar, A. K. Gupta
Abstract:
A serial number is a unique code assigned for identification of a single unit. Serial number are present on many objects. In an attempt to hide the identity of the numbered item, the numbers are often obliterated or removed by mechanical methods. The present work was carried out with an objective to develop less toxic, less time consuming, more result oriented chemical etching reagent for restoration of serial number on the copper metal plate. Around nine different reagents were prepared using different combination of reagent along with standard reagent and it was applied over 50 erased samples of copper metal and compared it with the standard reagent for restoration of erased marks. After experiment, it was found that the prepared Etching reagent no. 3 (10 g FeCl3 + 20 ml glacial acetic acid + 100 ml distilled H2O) showed the best result for restoration of erased serial number on the copper metal plate .The reagent was also less toxic and less time consuming as compared to standard reagent (19 g FeCl3 + 6 ml cans. HCl + 100 ml distilled H2O).Keywords: serial number restoration, copper plate, obliteration, chemical method
Procedia PDF Downloads 5562633 Some Considerations about the Theory of Spatial-Motor Thinking Applied to a Traditional Fife Band in Brazil
Authors: Murilo G. Mendes
Abstract:
This text presents part of the results presented in the Ph.D. thesis that has used John Baily's theory and method as well as its ethnographic application in the context of the fife flutes of the Banda Cabaçal dos Irmãos Aniceto in the state of Ceará, northeast of Brazil. John Baily is a British ethnomusicologist dedicated to studying the relationships between music, musical gesture, and embodied cognition. His methodology became a useful tool to highlight historical-social aspects present in the group's instrumental music. Remaining indigenous and illiterate, these musicians played and transmitted their music from generation to generation, for almost two hundred years, without any nomenclature or systematization of the fingering performed on the flute. In other words, his music, free from any theorization, is learned, felt, perceived, and processed directly through hearing and through the relationship between the instrument's motor skills and its sound result. For this reason, Baily's assumptions became fundamental in the analysis processes. As the author's methodology recommends, classes were held with the natives and provided technical musical learning and some important concepts. Then, transcriptions and analyses of musical aspects were made from patterns of movement on the instrument incorporated by repetitions and/or by the intrinsic facility of the instrument. As a result, it was discovered how the group reconciled its indigenous origins with the demand requested by the public power and the interests of the local financial elite from the mid-twentieth century. The article is structured from the cultural context of the group, where local historical and social aspects influence the social and musical practices of the group. Then, will be present the methodological conceptions of John Baily and, finally, their application in the music of the Irmãos Aniceto. The conclusion points to the good results of identifying, through this methodology and analysis, approximations between discourse, historical-social factors, and musical text. Still, questions are raised about its application in other contexts.Keywords: Banda Cabaçal dos Irmãos Aniceto, John Baily, pífano, spatial-motor thinking
Procedia PDF Downloads 1352632 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications
Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini
Abstract:
Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors
Procedia PDF Downloads 1242631 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency
Authors: A. G. More
Abstract:
Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate
Procedia PDF Downloads 1352630 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine
Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan
Abstract:
The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree
Procedia PDF Downloads 3022629 A Review of Recent Studies on Advanced Technologies for Water Treatment
Authors: Deniz Sahin
Abstract:
Growing concern for the presence and contamination of heavy metals in our water supplies has steadily increased over the last few years. A number of specialized technologies including precipitation, coagulation/flocculation, ion exchange, cementation, electrochemical operations, have been developed for the removal of heavy metals from wastewater. However, these technologies have many limitations in the application, such as high cost, low separation efficiency, Recently, numerous approaches have been investigated to overcome these difficulties and membrane filtration, advanced oxidation technologies (AOPs), and UV irradiation etc. are sufficiently developed to be considered as alternative treatments. Many factors come into play when selecting wastewater treatment technology, such as type of wastewater, operating conditions, economics etc. This study describes these various treatment technologies employed for heavy metal removal. Advantages and disadvantages of these technologies are also compared to highlight their current limitations and future research needs. For example, we investigated the applicability of the ultrafiltration technology for treating of heavy metal ions (e.g., Cu(II), Pb(II), Cd(II), Zn(II)) from synthetic wastewater solutions. Results shown that complete removal of metal ions, could be achieved.Keywords: heavy metal, treatment methodologies, water, water treatment
Procedia PDF Downloads 1702628 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode
Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya
Abstract:
Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry
Procedia PDF Downloads 1032627 Effect of Welding Heat Input on Intergranular Corrosion of Inconel 625 Overlay Weld Metal
Authors: Joon-Suk Kim, Hae-Woo Lee
Abstract:
This study discusses the effect of welding heat input on intergranular corrosion of the weld metal of Inconel 625 alloy. A specimen of Inconel 625 with a weld metal that controlled welding heat input was manufactured, and aging heat treatment was conducted to investigate sensitization by chromium carbides. The electrochemical SL and DL EPR experiments, together with the chemical ferric sulfate-sulfuric acid and nitric acid tests, were conducted to determine intergranular corrosion susceptibility between the specimens. In the SL and DL EPR experiments, specimens were stabilized in the weld metal, and therefore intergranular corrosion susceptibility could not be determined. However, in the ferric sulfate-sulfuric acid and nitric acid tests, the corrosion speed increased as heat input increased. This was because the amount of diluted Fe increased as the welding heat input increased, leading to microsegregation between the dendrites, which had a negative effect on the corrosion resistance.Keywords: Inconel 625, weling, overlay, heat input, intergranular corrosion
Procedia PDF Downloads 3572626 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration
Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw
Abstract:
Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel
Procedia PDF Downloads 3492625 Recent Developments in Coping Strategies Focusing on Music Performance Anxiety: A Systematic Review
Authors: Parham Bakhtiari
Abstract:
Music performance anxiety (MPA) is a prevalent concern among musicians, manifesting through cognitive, physiological, and behavioral symptoms that can severely impact performance quality and overall well-being. This systematic review synthesizes research on coping strategies employed by musicians to manage MPA from 2016 to 2023, identifying a range of psychological and physical interventions, including acceptance and commitment therapy (ACT), cognitive behavioral therapy (CBT), mindfulness, and yoga. Findings reveal that these interventions significantly reduce anxiety and enhance psychological resilience, with ACT showing notable improvements in psychological flexibility. Physical approaches also proved effective in mitigating physiological symptoms associated with MPA. However, challenges such as small sample sizes and methodological limitations hinder the generalizability of results. The review underscores the necessity for multi-faceted intervention strategies tailored to the unique needs of different musicians and emphasizes the importance of future research employing larger, randomized controlled designs to further validate these findings. Overall, this review serves as a comprehensive resource for musicians seeking effective coping strategies for managing performance anxiety, highlighting the critical interplay between mental and physical approaches in promoting optimal performance outcomes.Keywords: anxiety, performance, coping, music, strategy
Procedia PDF Downloads 262624 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 2342623 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish
Authors: Gintarė Sauliutė, Gintaras Svecevičius
Abstract:
Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model
Procedia PDF Downloads 2862622 Newly-Rediscovered Manuscripts Talking about Seventeenth-Century French Harpsichord Pedagogy
Authors: David Chung
Abstract:
The development of seventeenth-century French harpsichord music is enigmatic in several respects. Although little is known about the formation of this style before 1650 (we have names of composers, but no surviving music), the style has attained a high degree of refinement and sophistication in the music of the earliest known masters (e.g. Chambonnières, Louis Couperin and D’Anglebert). In fact, how the seventeenth-century musicians acquired the skills of their art remains largely steeped in mystery, as the earliest major treatise on French keyboard pedagogy was not published until 1702 by Saint Lambert. This study fills this lacuna by surveying some twenty recently-rediscovered manuscripts, which offer ample materials for revisiting key issues pertaining to seventeenth-century harpsichord pedagogy. By analyzing the musical contents, the verbal information and explicit notation (such as written-out ornaments and rhythmic effects), this study provides a rich picture of the process of learning at the time, with engaging details of performance nuances often lacking in tutors and treatises. Of even greater significance, that creative skills (such as continuo and ornamentation) were taught alongside fundamental knowledge (solfèges, note values, etc.) at the earliest stage of learning offers fresh challenge for modern pedagogues to rethink how harpsichord pedagogy can be revamped to cater for our own pedagogical and aesthetic needs.Keywords: French, harpsichord, pedagogy, seventeenth century
Procedia PDF Downloads 2582621 Assessment of Heavy Metal Contamination in Ground Water in the Coastal Part of Cauvery Deltaic Region, South India
Authors: Gnanachandrasamy G., Zhou Y., Ramkumar T., Venkatramanan S., Wang S., Mo Liping, Jingru Zhang
Abstract:
In order to assess the heavy metal contamination totally fourty five groundwater samples were collected from the coastal part of Cauvery deltaic region, South India, during monsoon season in the year of 2017. The study area lies between longitudes 79º15’ to 79º 50’ E and latitudes 10º10’ to 11º20’ N with total area of 2,569 km². The concentration of As, Ba, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals ranged between 0.007-117.8 µg/l for As, 8.503-1281 µg/l for Ba, 0.006-0.12 µg/l for Cd, 0.23-5.572µg/l for Cr, 0.44-17.9 µg/l for Co, 0.633-11.56 µg/l for Cu, 0.467-29.34 µg/l for Ni, 0.008-5.756 µg/l for Pb, 0.979 to 45.49 µg/l for Se, and 2.712-10480 µg/l for Zn in the groundwaters. A comparison of heavy metal concentration with WHO and BIS drinking water standards shows that Ni, Zn, As, Se, and Ba level is higher than the drinking water standards in some of the groundwater samples, and the concentrations of all the other heavy metals were lower than the drinking water standards. The present levels of heavy metal concentration in the studied area groundwaters are moderate to severe to public health and environmental concerns and need attention.Keywords: cauvery delta, drinking water, groundwater, heavy metals
Procedia PDF Downloads 3452620 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application
Authors: B. Bouktif, M. Gaidi, M. Benrabha
Abstract:
Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface
Procedia PDF Downloads 3882619 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel
Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana
Abstract:
The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength
Procedia PDF Downloads 2522618 Understanding the Utilization of Luffa Cylindrica in the Adsorption of Heavy Metals to Clean Up Wastewater
Authors: Akanimo Emene, Robert Edyvean
Abstract:
In developing countries, a low cost method of wastewater treatment is highly recommended. Adsorption is an efficient and economically viable treatment process for wastewater. The utilisation of this process is based on the understanding of the relationship between the growth environment and the metal capacity of the biomaterial. Luffa cylindrica (LC), a plant material, was used as an adsorbent in adsorption design system of heavy metals. The chemically modified LC was used to adsorb heavy metals ions, lead and cadmium, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion concentration, ionic strength and pH of solution were studied. The chemical nature and surface area of the tissues adsorbing heavy metals in LC biosorption systems were characterised by using electron microscopy and infra-red spectroscopy. It showed an increase in the surface area and improved adhesion capacity after chemical treatment. Metal speciation of the metal ions showed the binary interaction between the ions and the LC surface as the pH increases. Maximum adsorption was shown between pH 5 and pH 6. The ionic strength of the metal ion solution has an effect on the adsorption capacity based on the surface charge and the availability of the adsorption sites on the LC. The nature of the metal-surface complexes formed as a result of the experimental data were analysed with kinetic and isotherm models. The pseudo second order kinetic model and the two-site Langmuir isotherm model showed the best fit. Through the understanding of this process, there will be an opportunity to provide an alternative method for water purification. This will be provide an option, for when expensive water treatment technologies are not viable in developing countries.Keywords: adsorption, luffa cylindrica, metal-surface complexes, pH
Procedia PDF Downloads 892617 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions
Authors: Nisha Dhariwal, Anupama Sharma
Abstract:
The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization
Procedia PDF Downloads 3012616 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments
Authors: Lana Burmistrova
Abstract:
Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.Keywords: attention, blindness, memory, music learning, strategy
Procedia PDF Downloads 1842615 Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations
Abstract:
The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data.Keywords: Haas effect, musical acoustics, history of acoustical technology, Chinese opera stage, structure
Procedia PDF Downloads 1842614 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater
Authors: Derin Ureten
Abstract:
Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment
Procedia PDF Downloads 872613 Synthesis and Properties of Nanosized Mixed Oxide Systems for Environmental Protection
Authors: I. Yordanova, H. Kolev, S. Todorova, Z. Cherkezova-Zheleva
Abstract:
Catalysis plays a key role in solving many environmental problems by establishing efficient catalytic systems for environmental protection and reducing emissions of greenhouse gases from industry. Volatile organic compounds are major air pollutants. There are several ways to dispose of emissions like - adsorption, condensation, absorption, bio-filtration, thermal, catalytic, plasma and ultraviolet oxidation. The catalytic oxidation has more advantages over other methods. For example - lower energy consumption; the concentration of the organic contaminant may be low or may vary within wide limits. Catalysts for complete oxidation of VOCs can be classified into three categories: noble metal, metal oxides or supported metal oxides and mixture of noble metals and metal oxides. Most of the catalysts for the complete catalytic oxidation are based on Pt, Pd, Rh or a combination thereof. The oxides of the transition metal are one of the alternatives to noble metal catalysts for these reactions. They are less active at low temperatures, but at higher - their activity is similar. The properties of the catalyst depend on the distribution of the active phase, the medium type of the pre-treatment, the interaction between the active phase and the support and the interaction between the active phase and the reaction medium. Supported mono-component Mn and bi-component Mn-Co systems are examined in present study. The samples are prepared using co-precipitation method. SiO2 (Aerosil) is used as a support. The studied samples were precipitated by NH4OH. The synthesized samples were characterized by XRD, XPS, TPR and tested in the catalytic reaction of complete oxidation of n-hexane, propane, methanol, ethanol and propanol.Keywords: catalytic oxidation, Co-Mn oxide, oxidation of hydrocarbons and alcohols, environmental protection
Procedia PDF Downloads 3872612 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR
Authors: S. Vasailor, C. Rattanakawin
Abstract:
Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning
Procedia PDF Downloads 1382611 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students
Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee
Abstract:
Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.Keywords: hands-on activity, STEM education, computer programming, metal work
Procedia PDF Downloads 4652610 Properties Modification of Fiber Metal Laminates by Nanofillers
Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi
Abstract:
During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification
Procedia PDF Downloads 2062609 Teaching and Learning Jazz Improvisation Using Bloom's Taxonomy of Learning Domains
Authors: Graham Wood
Abstract:
The 20th Century saw the introduction of many new approaches to music making, including the structured and academic study of jazz improvisation. The rise of many school and tertiary jazz programs was rapid and quickly spread around the globe in a matter of decades. It could be said that the curriculum taught in these new programs was often developed in an ad-hoc manner due to the lack of written literature in this new and rapidly expanding area and the vastly different pedagogical principles when compared to classical music education that was prevalent in school and tertiary programs. There is widespread information regarding the theory and techniques used by jazz improvisers, but methods to practice these concepts in order to achieve the best outcomes for students and teachers is much harder to find. This research project explores the authors’ experiences as a studio jazz piano teacher, ensemble teacher and classroom improvisation lecturer over fifteen years and suggests an alignment with Bloom’s taxonomy of learning domains. This alignment categorizes the different tasks that need to be taught and practiced in order for the teacher and the student to devise a well balanced and effective practice routine and for the teacher to develop an effective teaching program. These techniques have been very useful to the teacher and the student to ensure that a good balance of cognitive, psychomotor and affective skills are taught to the students in a range of learning contexts.Keywords: bloom, education, jazz, learning, music, teaching
Procedia PDF Downloads 2562608 Microjetting from a Grooved Metal Surface under Decaying Shocks
Authors: Jian-Li Shao
Abstract:
Using Molecular Dynamic (MD) simulations, we simulated the microjet from the metal surface under decaying shock loading. The microjetting processes under release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed. The phased increase of microjet mass with shock pressure is found. For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant for liquid state. In addition, the temperature of the microjet can be always above the melting point. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of the bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile, the microjet appears to reduce because of the shock energy reduction.Keywords: microjetting, shock, metal, molecular dynamics
Procedia PDF Downloads 208