Search results for: induce%20systemic%20resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 621

Search results for: induce%20systemic%20resistance

231 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 61
230 Targeting Mre11 Nuclease Overcomes Platinum Resistance and Induces Synthetic Lethality in Platinum Sensitive XRCC1 Deficient Epithelial Ovarian Cancers

Authors: Adel Alblihy, Reem Ali, Mashael Algethami, Ahmed Shoqafi, Michael S. Toss, Juliette Brownlie, Natalie J. Tatum, Ian Hickson, Paloma Ordonez Moran, Anna Grabowska, Jennie N. Jeyapalan, Nigel P. Mongan, Emad A. Rakha, Srinivasan Madhusudan

Abstract:

Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.

Keywords: MRE11; XRCC1, ovarian cancer, platinum sensitization, synthetic lethality

Procedia PDF Downloads 104
229 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice

Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi

Abstract:

Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.

Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids

Procedia PDF Downloads 47
228 Case Study: Institutionalization of CSR Activities of MRGC through an NGO (OSDI)

Authors: Aasim Siddiqui

Abstract:

In a country where 45.6 per cent of the total population lives below the poverty line, according to the Human Development Report 2014 by UNDP, an increasing number of private companies are now dedicating their resources to remedy this situation of chronic poverty. Most corporations in Pakistan now have a separate and dedicated department for Corporate Social Responsibility (CSR), albeit with varying goals and hence different strategies for achieving those goals. Similarly, Marine Group of Companies (MRGC) also has a robust CSR policy which the group implements through a Non-Government Organization (NGO) called Organization for Social Development Initiatives (OSDI). This organization, which operates under the ambit of MRGC’s CSR division, has a concentrated focus on helping the poorest communities in the rural areas of Pakistan to break out of intergenerational poverty. This paper maps the theoretical strategies as well as practical activities undertaken by OSDI for poverty alleviation via rural development in Pakistan. To obtain in-depth information of demographics, livelihood and socio-economic indicators in OSDI’s focused districts; a combination of quantitative and qualitative research methodologies was used during the course of this research. The paper highlights and explains OSDI’s unique three-pronged approach which aims at reducing poverty through income generation via the livelihood assistance program and through the provision of access to the most basic services (including health and education) via the community development and food security programs. Modeled on the concept of capacity building, OSDI’s modus operandi is centered on disbursing timely microcredit facilities to farmers who can benefit from these funds by investing in productive assets to foster financial capability for the future. With a focus on increasing the income of poor farmers, OSDI’s approach is to integrate all the socio-economic facets: education, health and sanitation and food security, to induce a sustained positive impact on their living standards.

Keywords: CSR, poverty, rural, sustainability

Procedia PDF Downloads 228
227 Elucidating the Defensive Role of Silicon-Induced Biochemical Responses in Wheat Exposed to Drought and Diuraphis noxia Infestation

Authors: Lintle Mohase, Ninikoe Lebusa, Mpho Stephen Mafa

Abstract:

Wheat is an economically important cereal crop. However, the changing climatic conditions that intensify drought in production areas, and additional pest infestation, such as the Russian wheat aphid (RWA, Diuraphis noxia), severely hamper its production. Drought and pest management require an additional water supply through irrigation and applying inorganic nutrients (including silicon) as alternative strategies to mitigate the stress effects. Therefore, other approaches are needed to enhance wheat productivity during drought stress and aphid abundance. Two wheat cultivars were raised under greenhouse conditions, exposed to drought stress, and treated with silicon before infestation with the South African RWA biotype 2 (RWASA2). The morphological evaluations showed that severe drought or a combination of drought and infestation significantly reduced the plant height of wheat cultivars. Silicon treatment did not alleviate the growth reduction. The biochemical responses were measured using spectrophotometric assays with specific substrates. An evaluation of the enzyme activities associated with oxidative stress and defence responses indicated that drought stress increased NADPH oxidase activity, while silicon treatment significantly reduced it in drought-stressed and infested plants. At 48 and 72 hours sampling periods, a combination of silicon, drought and infestation treatment significantly increased peroxidase activity compared to drought and infestation treatment. The treatment also increased β-1,3-glucanase activity 72 hours after infestation. In addition, silicon and drought treatment increased glucose but reduced sucrose accumulation. Furthermore, silicon, drought, and infestation treatment combinations reduced the sucrose content. Finally, silicon significantly increased the trehalose content under severe drought and infestation, evident at 48 and 72-hour sampling periods. Our findings shed light on silicon’s ability to induce protective biochemical responses during drought and aphid infestation.

Keywords: drought, enzyme activity, silicon, soluble sugars, Russian wheat aphid, wheat

Procedia PDF Downloads 57
226 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 127
225 Protective Efficacy of Moringa oleifera against Oxidative Ovarian Damage and Reproductive Failure in Female Rats Caused by Cyclophosphamide

Authors: Seham Samir Soliman, Ahmed A.Suliman, Khaled Fathy, Ahmed A. Sedik

Abstract:

Cyclophosphamide (CP), an antineoplastic drug, has been found to induce reproductive damage. It is essential to develop approaches aimed at safeguarding ovarian tissue integrity in women experiencing reproductive toxicity as a result of chemotherapy. The current study was conducted to assess the impact of an extract derived from Moringa oleifera (M. oleifera) leaves on ovarian damage produced by CP. A total of 32 female Wistar Albino rats, which were in a healthy cycling state, were randomly separated into 4 groups, with every group contains 8 rats. The first group was administered intraperitoneal (i.p.) saline. The second group was administered a solitary intraperitoneal dosage of cyclophosphamide (200 mg/kg). The third one received M. oleifera extract (150 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. The fourth group received M. oleifera extract (250 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. Hormonal assessments, including luteinizing hormone (LH), estrogen (ES), and follicle-stimulating hormone (FSH), were performed 24 hours after CP administration. In addition, evaluating the antioxidant status and inflammatory response against CP. Moreover, conducting detailed histopathological and ultra-structural pictures of the ovary. Our findings reported that rats intoxicated with CP exhibited elevated levels of FSH, LH, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and a decrease in E₂, and glutathione (GSH) levels. Pre-treatment with M. oleifera extract (250 mg/kg orally) ameliorated the disturbance in hormonal changes, oxidative stress indices, and the levels of pro-inflammatory mediators. Also, the histopathological and ultra-structural pictures of the ovaries were improved significantly in rats. In conclusion, M. oleifera extract possesses a significant protective role against CP-induced acute reproductive toxicity via modulating the values of FSH, LH, E₂ and quenching the release of reactive oxygen species and inflammatory mediators in female rats.

Keywords: cyclophosphamide, Moringa oleifera, ovarian function, oxidative stress, pro-inflammatory mediators

Procedia PDF Downloads 44
224 Protective Effect of N-Acetyl Cysteine and Alpha Lipoic Acid on Rats Chronically Exposed to Cadmium Chloride

Authors: S. El Ballal, H. El Sabbagh, M. Abd El Gaber, A. Eisa, A. Al Gamal

Abstract:

Cadmium is one of the most harmful heavy metals able to induce severe injury. In this study, sixty four male Sprague Dawley rats weighing (70-80 gm) were used. Rats were divided into 4 groups each group of 16 rats. Group A: served as control and received commercial ration and distilled water Group B: cadmium chloride was administered orally in water at dose of 300 ppm cadmium (560 mg/L as CdCl2). Group C: Animals received cadmium in drinking water in addition to administration of N-acetylcysteine (NAC) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. Group D: Animals received cadmium in drinking water in addition to administration of alpha lipoic acid (ALA) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. The experiment was continued for 2 months. Collection of blood and tissue samples was performed at 2, 4, 6, 8 weeks. Blood sample were collected for serum biochemical analysis including malondialdehyde (MDA), total antioxidants, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, albumin, urea and uric acid. Tissue specimens were collected for histopathological examination including liver, kidney, brain and testis. Histopathological examination revealed that cadmium choloride induces pathological alterations which increased in severity with time. The use of NAC and ALA can ameliorate toxic effect of CdCl2. The results showed significant decrease MDA and significant increase total antioxidants in group C and D compared to group B, Liver enzymes include AST and ALT showed significant decrease. Regarding to results of total protein and albumin, they revealed significant increase. Urea and uric acid showed significant decrease. From our study we conclude that NAC and ALA have protective effect against cadmium toxicity.

Keywords: ALA, cadmium, histopathology, NAC

Procedia PDF Downloads 317
223 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 261
222 Effect of Psychological Stress to the Mucosal IL-6 and Helicobacter pylori Activity in Functional Dyspepsia and Myocytes

Authors: Eryati Darwin, Arina Widya Murni, Adnil Edwin Nurdin

Abstract:

Background: Functional dyspepsia (FD) is a highly prevalent and heterogeneous disorder. Most patients with FD complain of symptoms related to the intake of meals. Psychological stress may promote peptic ulcer and had an effect on ulcers associated Hp, and may also trigger worsen symptoms in inflammatory disorders of the gastrointestinal. Cells in mucosal gastric stimulate the production of several cytokines, which might associated with Helicobacter pylori infection. The cascade of biological events leading to stress-induced FD remains poorly understood. Aim of Study: To determine the prion-flammatory cytokine IL-6, and Helicobacter pylori activity on mucosal gastric of FD and their association with psychological stress. Methods: The subjects of this study were dyspeptic patients who visited M. Djamil General Hospital and in two Community Health Centers in Padang. On the basis of the stress index scale to identify psychological stress by using Depression Anxiety and Stress Scale (DASS 42), subjects were divided into two groups of 20 each, stress groups and non-stress groups. All diagnoses were confirmed by review of cortisol and esophagogastroduodenoscopy reports. Gastric biopsy samples and peripheral blood were taken during diagnostic procedures. Immunohistochemistry methods were used to determine the expression of IL-6 and Hp in gastric mucosal. The data were statistically analyzed by univariate and bivariate analysis. All procedures of this study were approved by Research Ethics Committee of Medical Faculty Andalas University. Results: In this study, we enrolled 40 FD patients (26 woman and 14 men) in range between 35-56 years old. Cortisol level of blood FD patients as parameter of stress hormone which taken in the morning was significantly higher in stress group than non-stress group. The expression of IL-6 in gastric mucosa was significantly higher in stress group in compared to non-stress group (p<0,05). Helicobacter pylori activity in gastric mucosal in stress group were significantly higher than non-stress group. Conclusion: The present study showed that psychological stress can induce gastric mucosal inflammation and increase of Helicobacter pylori activity.

Keywords: functional dyspepsia, Helicobacter pylori, interleukin-6, psychological stress

Procedia PDF Downloads 264
221 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 123
220 Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus

Authors: Belinda Vega, Claudio Alvarez, Héctor Flores, Marcia Oliva, Katherine Alveal, Teresa Toro, María José Tapia, Fanny Guzmán

Abstract:

With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056

Keywords: Cilus gilberti, mucus, antimicrobial activity, HYPOXIA

Procedia PDF Downloads 54
219 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 43
218 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation

Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna

Abstract:

Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.

Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades

Procedia PDF Downloads 176
217 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats

Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju

Abstract:

The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.

Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis

Procedia PDF Downloads 371
216 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL

Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara

Abstract:

PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.

Keywords: cognition, database, PostgreSQL, text-editor, visual-editor

Procedia PDF Downloads 254
215 Hexavalent Chromium-Induced Changes in Biochemical Parameters of Wistar Albino Rats

Authors: Ounassa Adjroud

Abstract:

Potassium dichromate (K2Cr2O7) is one of the most toxic elements to which man can be exposed at work or in the environment. The purpose of the current work is to compare the effect of K2Cr2O7 using variations in the dose, route of administration and duration of exposure in male and female Wistar albino rats with a special focus on biochemical parameters. K2Cr2O7 was subcutaneously administered alone (10, 50 and 100 mg/kg body weight) to female Wistar albino rats. Male rats received in their drinking water K2Cr2O7 30 mg/L/day) for 20 consecutive days. The Biochemical parameters were evaluated on days 3, 6 and 21 after subcutaneous (sc.) treatment in female rats and on days 10 and 20 after oral administration in male rats. The subcutaneous (s.c.) administration of 25 mg/kg of K2Cr2O7 to Wistar albino rats induced a slight change in plasma glucose levels during the experiment period. On the contrary, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment compared to controls females rats. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase (122%) in this parameter was obtained during the first three days after treatment. In addition, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase in this parameter (122%) was obtained during the first three days after treatment. In addition, administration of 100 mg/kg of K2Cr2O7 by s.c markedly augmented the levels of plasma urea on days 3 (62%) and 6 (121%). Administration of 30 mg/L/day of K2Cr2O7 in the drinking water induced a significant augmentation in both of plasma glucose (27%) and urea (126%) during the first ten days of treatment. These results suggested that K2Cr2O7 administered subcutaneously or in the drinking water may induce harmful effects on biochemical parameters.

Keywords: glucose, potassium dichromate, Wistar albino rat, urea

Procedia PDF Downloads 257
214 Structural and Functional Comparison of Untagged and Tagged EmrE Protein

Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner

Abstract:

EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.

Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag

Procedia PDF Downloads 358
213 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 19
212 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices

Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays

Abstract:

Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.

Keywords: ecological momentary assessment, real-time, stress, work

Procedia PDF Downloads 136
211 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis

Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee

Abstract:

Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.

Keywords: allergen, inflammation, nanodrug, wound

Procedia PDF Downloads 223
210 Activation of NLRP3 Inflammasomes by Helicobacter pylori Infection in Innate Cellular Model and Its Correlation to IL-1β Production

Authors: Islam Nowisser, Noha Farag, Mohamed El Azizi

Abstract:

Helicobacter pylori is a highly important human pathogen which inhabits about 50% of the population worldwide. Infection with this bacteria is very hard to treat, with high probability of recurrence. H. pylori causes severe gastric diseases, including peptic ulcer, gastritis, and gastric cancer, which has been linked to chronic inflammation. The infection has been reported to be associated with high levels of pro-inflammatory cytokines, especially IL-1β and TNF-α. The aim of the current study is to investigate the molecular mechanisms by which H. pylori activates NLRP3 inflammasome and its contribution to Il-1 β production in an innate cellular model. H. pylori PMSS1 and G27 standard strains, as well as the PMSS1 isogenic mutant strain PMSS1ΔVacA and G27ΔVacA, G27ΔCagA in addition to clinical isolates obtained from biopsy samples from the antrum and corpus mucosa of chronic gastritis patients, were used to establish infection in RAW-264.7 macrophages. The production levels of TNF-α and IL-1β was assessed using ELISA. Since expression of these cytokines is often regulated by the transcription factor complex, nuclear factor-kB (NF-kB), the activation of NF-κB in H. pylori infected cells was also evaluated by luciferase assay. Genomic DNA was extracted from bacterial cultures of H. pylori clinical isolates as well as the standard strains and their corresponding mutants, where they were evaluated for the cagA pathogenicity island and vacA expression. The correlation between these findings and expression of the cagA Pathogenicity Island and vacA in the bacteria was also investigated. The results showed IL-1β, and TNF-α production significantly increased in raw macrophages following H. pylori infection. The cagA+ and vacA+ H. pylori strains induced significant production of IL-1β compared to cagA- and vacA- strains. The activation pattern of NF-κB was correlated in the isolates to their cagA and vacA expression profiles. A similar finding could not be confirmed for TNF-α production. Our study shows the ability of H. pylori to activate NF-kB and induce significant IL-1β production as a possible mechanism for the augmented inflammatory response seen in subjects infected with cagA+ and vacA+ H. pylori strains that would lead to the progression to more severe form of the disease.

Keywords: Helicobacter pylori, IL-1β, inflammatory cytokines, nuclear factor KB, TNF-α

Procedia PDF Downloads 105
209 Thinking about the Loss of Social Networking Sites May Expand the Distress of Social Exclusion

Authors: Wen-Bin Chiou, Hsiao-Chiao Weng

Abstract:

Social networking sites (SNS) such as Facebook and Twitter are low-cost tools that can promote the creation of social connections by providing a convenient platform that can be accessed at any time. In the current research, a laboratory experiment was conducted test the hypothesis that reminders of losing SNS would alter the impact of social events, especially those involving social exclusion. Specifically, this study explored whether losing SNS would intensify perceived social distress induced by exclusionary bogus feedback. Eighty-eight Facebook users (46 females, 42 males; mean age = 22.6 years, SD = 3.1 years) were recruited via campus posters and flyers at a national university in southern Taiwan. After participants provided consent, they were randomly assigned to a 2 (SNS non-use vs. neutral) between-subjects experiment. Participants completed an ostensible survey about online social networking in which we included an item about the time spent on SNS per day. The last question was used to manipulate thoughts about losing SNS access. Participants under the non-use condition were asked to record three conditions that would render them unable to use SNS (e.g., a network adaptor problem, malfunctioning cable modem, or problems with Internet service providers); participants under the neutral condition recorded three conditions that would render them unable to log onto the college website (e.g., server maintenance, local network or firewall problems). Later, this experiment employed a bogus-feedback paradigm to induce social exclusion. Participants then rated their social distress on a four-item scale, identical to that of Experiment 1 (α = .84). The results showed that thoughts of losing SNS intensified distress caused by social exclusion, suggesting that the loss of SNS has a similar effect to the loss of a primary source for social reconnections. Moreover, the priming effects of SNS on perceived distress were more prominent for heavy users. The demonstrated link between the idea of losing SNS use and increased pain of social exclusion manifests the importance of SNS as a crucial gateway for acquiring and rebuilding social connections. Use of online social networking appears to be a two-edged sword for coping with social exclusion in human lives in the e-society.

Keywords: online social networking, perceived distress, social exclusion, SNS

Procedia PDF Downloads 401
208 Satellite Based Assessment of Urban Heat Island Effects on Major Cities of Pakistan

Authors: Saad Bin Ismail, Muhammad Ateeq Qureshi, Rao Muhammad Zahid Khalil

Abstract:

In the last few decades, urbanization worldwide has been sprawled manifold, which is denunciated in the growth of urban infrastructure and transportation. Urban Heat Island (UHI) can induce deterioration of the living environment, disabilities, and rises in energy usages. In this study, the prevalence/presence of Surface Urban Heat Island (SUHI) effect in major cities of Pakistan, including Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar has been investigated. Landsat and SPOT satellite images were acquired for the assessment of urban sprawl. MODIS Land Surface Temperature product MOD11A2 was acquired between 1000-1200 hours (local time) for assessment of urban heat island. The results of urban sprawl informed that the extent of Islamabad and Rawalpindi urban area increased from 240 km2 to 624 km2 between 2000 and 2016, accounted 24 km2 per year, Lahore 29 km2, accounted 1.6 km2 per year, Karachi 261 km2, accounted for 16 km2/ per year, Peshawar 63 km2, accounted 4 km2/per year, and Quetta 76 km2/per year, accounted 5 km2/per year approximately. The average Surface Urban Heat Island (SUHI) magnitude is observed at a scale of 0.63 ᵒC for Islamabad and Rawalpindi, 1.25 ᵒC for Lahore, and 1.16 ᵒC for Karachi, which is 0.89 ᵒC for Quetta, and 1.08 ᵒC for Peshawar from 2000 to 2016. The pixel-based maximum SUHI intensity reaches up to about 11.40 ᵒC for Islamabad and Rawalpindi, 15.66 ᵒC for Lahore, 11.20 ᵒC for Karachi, 14.61 ᵒC for Quetta, and 15.22 ᵒC for Peshawar from the baseline of zero degrees Centigrade (ᵒC). The overall trend of SUHI in planned cities (e.g., Islamabad) is not found to increase significantly. Spatial and temporal patterns of SUHI for selected cities reveal heterogeneity and a unique pattern for each city. It is well recognized that SUHI intensity is modulated by land use/land cover patterns (due to their different surface properties and cooling rates), meteorological conditions, and anthropogenic activities. The study concluded that the selected cities (Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar) are examples where dense urban pockets observed about 15 ᵒC warmer than a nearby rural area.

Keywords: urban heat island , surface urban heat island , urbanization, anthropogenic source

Procedia PDF Downloads 300
207 Numerical Investigation of Embankments for Protecting Rock Fall

Authors: Gökhan Altay, Cafer Kayadelen

Abstract:

Rock fall is a movement of huge rock blocks from dip slopes due to physical effects. It generally occurs where loose tuffs lying under basalt flow or stringcourse is being constituted by limestone layers which stand on clay. By corrosion of some parts, big cracks occur on layers and these cracks continue to grow with the effect of freezing-thawing. In this way, the breaking rocks fall down from these dip slopes. Earthquakes which can induce lots of rock movements is another reason for rock fall events. In Turkey, we have a large number of regions prone to the earthquake as in the World so this increases the possibility of rock fall events. A great number of rock fall events take place in Turkey as in the World every year. The rock fall events occurring in urban areas cause serious damages in houses, roads and workplaces. Sometimes it also hinders transportation and furthermore it maybe kills people. In Turkey, rock fall events happen mostly in Spring and Winter because of freezing- thawing of water in rock cracks frequently. In mountain and inclined areas, rock fall is risky for engineering construction and environment. Some countries can invest significant money for these risky areas. For instance, in Switzerland, approximately 6.7 million dollars is spent annually for a distance of 4 km, to the systems to prevent rock fall events. In Turkey, we have lots of urban areas and engineering structure that have the rock fall risk. The embankments are preferable for rock fall events because of its low maintenance and repair costs. Also, embankments are able to absorb much more energy according to other protection systems. The current design method of embankments is only depended on field tests results so there are inadequate studies about this design method. In this paper, the field test modeled in three dimensions and analysis are carried out with the help of ANSYS programme. By the help of field test from literature the numerical model validated. After the validity of numerical models additional parametric studies performed. Changes in deformation of embankments are investigated by the changes in, geometry, velocity and impact height of falling rocks.

Keywords: ANSYS, embankment, impact height, numerical analysis, rock fall

Procedia PDF Downloads 490
206 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 421
205 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 110
204 Histological Study on the Effect of Bone Marrow Transplantation Combined with Curcumin on Pancreatic Regeneration in Streptozotocin Induced Diabetic Rats

Authors: Manal M. Shehata, Kawther M. Abdel-Hamid, Nashwa A. Mohamed, Marwa H. Bakr, Maged S. Mahmoud, Hala M. Elbadre

Abstract:

Introduction: The worldwide rapid increase in diabetes poses a significant challenge to current therapeutic approaches. Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. Curcumin, is a dietary spice with antioxidant activity. Aim of work: The present study was undertaken to investigate the therapeutic potential of curcumin, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Material and Methods: Fifty adult male healthy albino rats were included in the present study.They were divided into two groups: Group І: (control group) included 10 rats. Group П: (diabetic group): included 40 rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). Group II will be further subdivided into four groups (10 rats for each): Group II-a (diabetic control). Group II-b: rats were received single intraperitoneal injection of bone marrow suspension (un-fractionated bone marrow cells) prepared from rats of the same family. Group II-c: rats were treated with curcumin orally by gastric intubation for 6 weeks. Group II-d: rats were received a combination of single bone marrow transplantation and curcumin for 6 weeks. After 6 weeks, blood glucose, insulin levels were measured and the pancreas from all rats were processed for Histological, Immunohistochemical and morphometric examination. Results: Diabetic group, showed progressive histological changes in the pancreatic islets. Treatment with either curcumin or bone marrow transplantation improved the structure of the islets and reversed streptozotocin-induced hyperglycemia and hypoinsulinemia. Combination of curcumin and bone marrow transplantation elicited more profound alleviation of streptozotocin-induced changes including islet regeneration and insulin secretion. Conclusion: The use of natural antioxidants combined with bone marrow transplantation to induce pancreatic regeneration is a promising strategy in the management of diabetes.

Keywords: diabtes, panceatic islets, bone marrow transplantation, curcumin

Procedia PDF Downloads 365
203 Effect of Phytohormones on the Development and Nutraceutical Characteristics of the Fruit Capsicum annuum

Authors: Rossy G. Olan Villegas, Gerardo Acosta Garcia, Aurea Bernardino Nicanor, Leopoldo Gonzalez Cruz, Humberto Ramirez Medina

Abstract:

Capsicum annuum is a crop of agricultural and economic importance in Mexico and other countries. The fruit (pepper) contains bioactive components such as carotenoids, phenolic compounds and capsaicinoids that improve health. However, pepper cultivation is affected by biotic and abiotic factors that decrease yield. Some phytohormones like gibberellins and auxins induce the formation and development of fruit in several plants. In this study, we evaluated the effect of the exogenous application of phytohormones like gibberellic acid and indolbutyric acid on fruit development of jalapeno pepper plants, the protein profile of plant tissues, the accumulation of bioactive compounds and antioxidant activity in the pericarp and seeds. For that, plants were sprinkled with these phytohormones. The fruit collection for the control, indolbutyric acid and gibberellic acid treatments was 7 peppers per plant; however, for the treatment that combines indolbutyric acid and gibberellic acid, a fruit with the shortest length (1.52 ± 1.00 cm) and weight (0.41 ± 1.0 g) was collected compared to fruits of plants grown under other treatments. The length (4,179 ± 0,130 cm) and weight of the fruit (8,949 ± 0.583 g) increased in plants treated with indolbutyric acid, but these characteristics decreased with the application of GA3 (length of 3,349 ± 0.127 cm and a weight 4,429 ± 0.144 g). The content of carotenes and phenolic compounds increased in plants treated with GA3 (1,733 ± 0.092 and 1,449 ± 0.009 mg / g, respectively) or indolbutyric acid (1,164 ± 0.042 and 0.970 ± 0.003 mg / g). However, this effect was not observed in plants treated with both phytohormones (0.238 ± 0.021 and 0.218 ± 0.004 mg / g). Capsaicin content was higher in all treatments; but it was more noticeable in plants treated with both phytohormones, the value being 0.913 ± 0.001 mg / g (three times greater in amount). The antioxidant activity was measured by 3 different assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant power of ferric reduction (FRAP) and 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid ( ABTS) to find the minimum inhibitory concentration of the reducing radical (IC50 and EC50). Significant differences were observed from the application of the phytohormone, being the fruits treated with gibberellins, which had a greater accumulation of bioactive compounds. Our results suggest that the application of phytohormones modifies the development of fruit and its content of bioactive compounds.

Keywords: auxins, capsaicinoids, carotenoids, gibberellins

Procedia PDF Downloads 92
202 BSYJ Promoting Homing and Differentiation of Mesenchymal Stem Cells at the Retina of Age-Related Macular Degeneration Model Mice Induced by Sodium Iodate

Authors: Lina Liang, Kai Xu, Jing Zhang

Abstract:

Purpose: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement is discussed as a potential therapy for AMD. Besides intravitreal injection and subretinal injection, intravenous administration has been explored as an alternative route. This study is to observe the effect of BSYJ, a traditional Chinese medicine on the homing and differentiation of mesenchymal stem cells transplanted via tail vein injection in an age-related macular degeneration mouse model. Methods: Four-week-old C57BL/6J mice were injected with 40 mg/kg NaIO₃ to induce age-related macular degeneration model. At the second day after NaIO₃ injection, 1×10⁷ GFP labeled bone marrow-derived mesenchymal stem cells (GFP-MSCs) were transplanted via tali vein injection into the experimental mice. Then the mice were randomly divided into two groups, gavaged with either BSYJ solution (BSYJ group, n=12) or distilled water (DW group, n=12). 12 age-matched healthy C57BL/6J mice were fed regularly as normal control. At day 7, day 14, and day 28 after treatment, retina flat mounting was used to detect the homing of mesenchymal stem cells at the retina. Double-labeling immunofluorescence was used to determine the differentiation of mesenchymal stem cells. Results: At 7, 14, 28 days after treatment, the numbers of GFP-MSCs detected by retina flatmount were 10.2 ± 2.5, 14.5 ± 3.4 and 18.7 ± 5.8, respectively in the distilled water group, while 15.7 ± 3.8, 32.3 ± 3.5 and 77.3 ± 6.4 in BSYJ group, the differences between the two groups were significant (p < 0.05). At 28 days after treatment, it was shown by double staining immunofluorescence that there were more GFP positive cells in the retina of BSYJ group than that of the DW group, but none of the cells expressed RPE specific genes such as RPE65 and CRALBP, or photoreceptor genes such as recoverin and rhodopsin either in BSYJ group or DW group. However, GFAP positive cells were found among the cells labeled with GFP, and the double labeling cells were much more in the BSYJ group than the distilled water group. Conclusion: BSYJ could promote homing of mesenchymal stem cells at the retina of age-related macular degeneration model mice induced by NaIO₃, and the differentiation towards to glial cells. Acknowledgement: National Natural Foundation of China (No: 81473736, 81674033,81973912).

Keywords: BSYJ, differentiation, homing, mesenchymal stem cells

Procedia PDF Downloads 110