Search results for: efficiency optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9232

Search results for: efficiency optimization

8842 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
8841 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 31
8840 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 153
8839 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator

Procedia PDF Downloads 836
8838 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 102
8837 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
8836 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials

Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer

Abstract:

A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.

Keywords: blending, buckling optimization, composite panels, wing torsion box

Procedia PDF Downloads 409
8835 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.

Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation

Procedia PDF Downloads 172
8834 The Intersection of Artificial Intelligence and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.

Keywords: AI, mathematics, machine learning, optimization techniques, image processing

Procedia PDF Downloads 17
8833 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 428
8832 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 352
8831 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem

Procedia PDF Downloads 396
8830 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
8829 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments

Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul

Abstract:

A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.

Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff

Procedia PDF Downloads 400
8828 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 35
8827 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
8826 Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets

Authors: Hichem Kmimech, Achref Jabeur Telmoudi, Lotfi Nabli

Abstract:

The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach.

Keywords: marking, production system, labeled Petri nets, particle swarm optimization

Procedia PDF Downloads 179
8825 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network

Authors: A. Sri Janani, K. Immanuel Arokia James

Abstract:

Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.

Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique

Procedia PDF Downloads 359
8824 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization

Procedia PDF Downloads 397
8823 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 157
8822 Methodology of Construction Equipment Optimization for Earthwork

Authors: Jaehyun Choi, Hyunjung Kim, Namho Kim

Abstract:

Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives.

Keywords: earthwork operation, construction equipment, process simulation, optimization

Procedia PDF Downloads 427
8821 The Interdisciplinary Synergy Between Computer Engineering and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.

Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization

Procedia PDF Downloads 15
8820 Assessing Efficiency Trends in the Indian Sugar Industry

Authors: S. P. Singh

Abstract:

This paper measures technical and scale efficiencies of 40 Indian sugar companies for the period from 2004-05 to 2013-14. The efficiencies are estimated through input-oriented DEA models using one output variable—value of output (VOP) and five input variables—capital cost (CA), employee cost (EMP), raw material (RW), energy & fuel (E&F) and other manufacturing expenses (OME). The sugar companies are classified into integrated and non-integrated categories to know which one achieves higher level of efficiency. Sources of inefficiency in the industry are identified through decomposing the overall technical efficiency (TE) into pure technical efficiency (PTE) and scale efficiency (SE). The paper also estimates input-reduction targets for relatively inefficient companies and suggests measures to improve their efficiency level. The findings reveal that the TE does not evince any trend rather it shows fluctuations across years, largely due to erratic and cyclical pattern of sugar production. Further, technical inefficiency in the industry seems to be driven more by the managerial inefficiency than the scale inefficiency, which implies that TE can be improved through better conversion of inputs into output.

Keywords: DEA, slacks, sugar industry, technical efficiency

Procedia PDF Downloads 319
8819 SAR and B₁ Considerations for Multi-Nuclear RF Body Coils

Authors: Ria Forner

Abstract:

Introduction: Due to increases in the SNR at 7T and above, it becomes more favourable to make use of X-nuclear imaging. Integrated body coils tuned to 120MHz for 31P, 79MHz for 23Na, and 75 MHz for 13C at 7T were simulated with a human male, female, or child body model to assess strategies of use for metabolic MR imaging in the body. Methods: B1 and SAR efficiencies in the heart, liver, spleen, and kidneys were assessed using numerical simulations over the three frequencies with phase shimming. Results: B1+ efficiency is highly variable over the different organs, particularly for the highest frequency; however, local SAR efficiency remains relatively constant over the frequencies in all subjects. Although the optimal phase settings vary, one generic phase setting can be identified for each frequency at which the penalty in B1+ is at a max of 10%. Discussion: The simulations provide practical strategies for power optimization, B1 management, and maintaining safety. As expected, the B1 field is similar at 75MHz and 79MHz, but reduced at 120MHz. However, the B1 remains relatively constant when normalised by the square root of the peak local SAR. This is in contradiction to generalized SAR considerations of 1H MRI at different field strengths, which is defined by global SAR instead. Conclusion: Although the B1 decreases with frequency, SAR efficiency remains constant throughout the investigated frequency range. It is possible to shim the body coil to obtain a maximum of 10% extra B1+ in a specific organ in a body when compared to a generic setting.

Keywords: birdcage, multi-nuclear, B1 shimming, 7 Tesla MRI, liver, kidneys, heart, spleen

Procedia PDF Downloads 67
8818 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 117
8817 Optimization of Vertical Axis Wind Turbine

Authors: C. Andreu Sabater, D. Drago, C. Key-aberg, W. Moukrim, B. Naccache

Abstract:

Present study concerns the optimization of a new vertical axis wind turbine system associated to a dynamoelectric motor. The system is composed by three Savonius wind turbines, arranged in an equilateral triangle. The idea is to propose a new concept of wind turbines through a technical approach allowing find a specific power never obtained before and therefore, a significant reduction of installation costs. In this work different wind flows across the system have been simulated, as well as precise definition of parameters and relations established between them. It will allow define the optimal rotor specific power for a given volume. Calculations have been developed with classical Savonius dimensions.

Keywords: VAWT, savonius, specific power, optimization, weibull

Procedia PDF Downloads 330
8816 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 399
8815 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software

Authors: Mohamed Mesbah, Bruce Janson

Abstract:

An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.

Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment

Procedia PDF Downloads 23
8814 Optimization of Ultrasonic Assisted Extraction of Antioxidants and Phenolic Compounds from Coleus Using Response Surface Methodology

Authors: Reihaneh Ahmadzadeh Ghavidel

Abstract:

Free radicals such as reactive oxygen species (ROS) have detrimental effects on human health through several mechanisms. On the other hand, antioxidant molecules reduce free radical generation in biologic systems. Synthetic antioxidants, which are used in food industry, have also negative impact on human health. Therefore recognition of natural antioxidants such as anthocyanins can solve these problems simultaneously. Coleus (Solenostemon scutellarioides) with red leaves is a rich source of anthocyanins compounds. In this study we evaluated the effect of time (10, 20 and 30 min) and temperature (40, 50 and 60° C) on optimization of anthocyanin extraction using surface response method. In addition, the study was aimed to determine maximum extraction for anthocyanin from coleus plant using ultrasound method. The results indicated that the optimum conditions for extraction were 39.84 min at 69.25° C. At this point, total compounds were achieved 3.7451 mg 100 ml⁻¹. Furthermore, under optimum conditions, anthocyanin concentration, extraction efficiency, ferric reducing ability, total phenolic compounds and EC50 were registered 3.221931, 6.692765, 223.062, 3355.605 and 2.614045, respectively.

Keywords: anthocyanin, antioxidant, coleus, extraction, sonication

Procedia PDF Downloads 320
8813 Analysis of Technical Efficiency and Its Determinants among Cattle Fattening Enterprises in Kebbi State, Nigeria

Authors: Gona Ayuba, Isiaka Mohammed, Kotom Mohammed Baba, Mohammed Aabubakar Maikasuwa

Abstract:

The study examined the technical efficiency and its determinants of cattle fattening enterprises in Kebbi state, Nigeria. Data were collected from a sample of 160 fatteners between June 2010 and June 2011 using the multistage random sampling technique. Translog stochastic frontier production function was employed for the analysis. Results of the analysis show that technical efficiency indices varied from 0.74 to 0.98%, with a mean of 0.90%, indicating that there was no wide gap between the efficiency of best technical efficient fatteners and that of the average fattener. The result also showed that fattening experience and herd size influenced the level of technical efficiency at 1% levels. It is recommended that credit agencies should ensure that credit made available to the fatteners is monitored to ensure appropriate utilization.

Keywords: technical efficiency, determinants, cattle, fattening enterprises

Procedia PDF Downloads 452