Search results for: computational modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5435

Search results for: computational modeling

5045 Understanding Inhibitory Mechanism of the Selective Inhibitors of Cdk5/p25 Complex by Molecular Modeling Studies

Authors: Amir Zeb, Shailima Rampogu, Minky Son, Ayoung Baek, Sang H. Yoon, Keun W. Lee

Abstract:

Neurotoxic insults activate calpain, which in turn produces truncated p25 from p35. p25 forms hyperactivated Cdk5/p25 complex, and thereby induces severe neuropathological aberrations including hyperphosphorylated tau, neuroinflammation, apoptosis, and neuronal death. Inhibition of Cdk5/p25 complex alleviates aberrant phosphorylation of tau to mitigate AD pathology. PHA-793887 and Roscovitine have been investigated as selective inhibitors of Cdk5/p25 with IC50 values 5nM and 160nM, respectively, but their mechanistic studies remain unknown. Herein, computational simulations have explored the binding mode and interaction mechanism of PHA-793887 and Roscovitine with Cdk5/p25. Docking results suggested that PHA-793887 and Rsocovitine have occupied the ATP-binding site of Cdk5 and obtained highest docking (GOLD) score of 66.54 and 84.03, respectively. Furthermore, molecular dynamics (MD) simulation demonstrated that PHA-793887 and Roscovitine established stable RMSD of 1.09 Å and 1.48 Å with Cdk5/p25, respectively. Profiling of polar interactions suggested that each inhibitor formed hydrogen bonds (H-bond) with catalytic residues of Cdk5 and could remain stable throughout the molecular dynamics simulation. Additionally, binding free energy calculation by molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) suggested that PHA-793887 and Roscovitine had lowest binding free energies of -150.05 kJ/mol and -113.14 kJ/mol, respectively with Cdk5/p25. Free energy decomposition demonstrated that polar energy by H-bond between the Glu81 of Cdk5 and PHA-793887 is the essential factor to make PHA-793887 highly selective towards Cdk5/p25. Overall, this study provided substantial evidences to explore mechanistic interactions of the selective inhibitors of Cdk5/p25 and could be used as fundamental considerations in the development of structure-based selective inhibitors of Cdk5/p25.

Keywords: Cdk5/p25 inhibition, molecular modeling of Cdk5/p25, PHA-793887 and roscovitine, selective inhibition of Cdk5/p25

Procedia PDF Downloads 118
5044 A General Framework to Successfully Operate the Digital Transformation Process in the Post-COVID Era

Authors: Driss Kettani

Abstract:

In this paper, we shed light on “Digital Divide 2.0,” which we see as COVID-19’s Version of the Digital Divide! We believe that “Fighting” against Digital Divide 2.0 necessitates for a Country to be seriously advanced in the Global Digital Transformation that is, naturally, a complex, delicate, costly and long-term Process. We build an argument supporting our assumption and, from there, we present the foundations of a computational framework to guide and streamline Digital Transformation at all levels.

Keywords: digital divide 2.0, digital transformation, ICTs for development, computational outcomes assessment

Procedia PDF Downloads 142
5043 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 376
5042 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 371
5041 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 113
5040 Patient-Specific Design Optimization of Cardiovascular Grafts

Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw

Abstract:

Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.

Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering

Procedia PDF Downloads 217
5039 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 259
5038 Establishing Multi-Leveled Computability as a Living-System Evolutionary Context

Authors: Ron Cottam, Nils Langloh, Willy Ranson, Roger Vounckx

Abstract:

We start by formally describing the requirements for environmental-reaction survival computation in a natural temporally-demanding medium, and develop this into a more general model of the evolutionary context as a computational machine. The effect of this development is to replace deterministic logic by a modified form which exhibits a continuous range of dimensional fractal diffuseness between the isolation of perfectly ordered localization and the extended communication associated with nonlocality as represented by pure causal chaos. We investigate the appearance of life and consciousness in the derived general model, and propose a representation of Nature within which all localizations have the character of quasi-quantal entities. We compare our conclusions with Heisenberg’s uncertainty principle and nonlocal teleportation, and maintain that computability is the principal influence on evolution in the model we propose.

Keywords: computability, evolution, life, localization, modeling, nonlocality

Procedia PDF Downloads 379
5037 Numerical Modeling of Air Pollution with PM-Particles and Dust

Authors: N. Gigauri, A. Surmava, L. Intskirveli, V. Kukhalashvili, S. Mdivani

Abstract:

The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³).

Keywords: air pollution, dust, numerical modeling, PM-particles

Procedia PDF Downloads 115
5036 Computational Chemical-Composition of Carbohydrates in the Context of Healthcare Informatics

Authors: S. Chandrasekaran, S. Nandita, M. Shivathmika, Srikrishnan Shivakumar

Abstract:

The objective of the research work is to analyze the computational chemical-composition of carbohydrates in the context of healthcare informatics. The computation involves the representation of complex chemical molecular structure of carbohydrate using graph theory and in a deployable Chemical Markup Language (CML). The parallel molecular structure of the chemical molecules with or without other adulterants for the sake of business profit can be analyzed in terms of robustness and derivatization measures. The rural healthcare program should create awareness in malnutrition to reduce ill-effect of decomposition and help the consumers to know the level of such energy storage mixtures in a quantitative way. The earlier works were based on the empirical and wet data which can vary from time to time but cannot be made to reuse the results of mining. The work is carried out on the quantitative computational chemistry on carbohydrates to provide a safe and secure right to food act and its regulations.

Keywords: carbohydrates, chemical-composition, chemical markup, robustness, food safety

Procedia PDF Downloads 358
5035 Modeling and Prediction of Hot Deformation Behavior of IN718

Authors: M. Azarbarmas, J. M. Cabrera, J. Calvo, M. Aghaie-Khafri

Abstract:

The modeling of hot deformation behavior for unseen conditions is important in metal-forming. In this study, the hot deformation of IN718 has been characterized in the temperature range 950-1100 and strain rate range 0.001-0.1 s-1 using hot compression tests. All stress-strain curves showed the occurrence of dynamic recrystallization. These curves were implemented quantitatively in mathematics, and then constitutive equation indicating the relationship between the flow stress and hot deformation parameters was obtained successfully.

Keywords: compression test, constitutive equation, dynamic recrystallization, hot working

Procedia PDF Downloads 401
5034 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler

Authors: Teewin Plangsrinont, Wasawat Nakkiew

Abstract:

In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent.

Keywords: computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower

Procedia PDF Downloads 181
5033 Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals

Authors: Alok Shiomurti Tripathi, Ajay Kumar Timiri, Papiya Mitra Mazumder, Anil Chandewar

Abstract:

The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies.

Keywords: diabetic nephropathy, glimepiride, sildenafil citrate, pharmacokinetics, homology modeling, schrodinger

Procedia PDF Downloads 345
5032 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi

Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu

Abstract:

A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.

Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi

Procedia PDF Downloads 150
5031 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites

Authors: M. Palizvan, M. T. Abadi, M. H. Sadr

Abstract:

Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.

Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE

Procedia PDF Downloads 148
5030 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling

Procedia PDF Downloads 319
5029 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation

Authors: Abul Bashar

Abstract:

The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.

Keywords: cloud computing, modeling framework, performance evaluation, simulation tools

Procedia PDF Downloads 465
5028 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 147
5027 Modeling of Building a Conceptual Scheme for Multimodal Freight Transportation Information System

Authors: Gia Surguladze, Nino Topuria, Lily Petriashvili, Giorgi Surguladze

Abstract:

Modeling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA – Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. The software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.

Keywords: seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA

Procedia PDF Downloads 405
5026 Transportation Accidents Mortality Modeling in Thailand

Authors: W. Sriwattanapongse, S. Prasitwattanaseree, S. Wongtrangan

Abstract:

The transportation accidents mortality is a major problem that leads to loss of human lives, and economic. The objective was to identify patterns of statistical modeling for estimating mortality rates due to transportation accidents in Thailand by using data from 2000 to 2009. The data was taken from the death certificate, vital registration database. The number of deaths and mortality rates were computed classifying by gender, age, year and region. There were 114,790 cases of transportation accidents deaths. The highest average age-specific transport accident mortality rate is 3.11 per 100,000 per year in males, Southern region and the lowest average age-specific transport accident mortality rate is 1.79 per 100,000 per year in females, North-East region. Linear, poisson and negative binomial models were chosen for fitting statistical model. Among the models fitted, the best was chosen based on the analysis of deviance and AIC. The negative binomial model was clearly appropriate fitted.

Keywords: transportation accidents, mortality, modeling, analysis of deviance

Procedia PDF Downloads 220
5025 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice

Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani

Abstract:

In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.

Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry

Procedia PDF Downloads 123
5024 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 127
5023 Biophysically Motivated Phylogenies

Authors: Catherine Felce, Lior Pachter

Abstract:

Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.

Keywords: phylogenetics, single-cell, biophysical modeling, transcription

Procedia PDF Downloads 16
5022 Risk Assessment of Oil Spill Pollution by Integration of Gnome, Aloha and Gis in Bandar Abbas Coast, Iran

Authors: Mehrnaz Farzingohar, Mehran Yasemi, Ahmad Savari

Abstract:

The oil products are imported and exported via Rajaee’s tanker terminal. Within loading and discharging in several cases the oil is released into the berths and made oil spills. The spills are distributed within short time and seriously affected Rajaee port’s environment and even extended areas. The trajectory and fate of oil spills investigated by modeling and parted by three risk levels base on the modeling results. First GNOME (General NOAA Operational Modeling Environment) applied to trajectory the liquid oil. Second, ALOHA (Areal Location Of Hazardous Atmosphere) air quality model, is integrated to predict the oil evaporation path within the air. Base on the identified zones the high risk areas are signed by colored dots which their densities calculated and clarified on a map which displayed the harm places. Wind and water circulation moved the pollution to the East of Rajaee Port that accumulated about 12 km of coastline. Approximately 20 km of north east of Qeshm Island shore is covered by the three levels of risky areas. Since the main wind direction is SSW the pollution pushed to the east and the highest risk zones formed on the crests edges hence the low risk appeared on the concavities. This assessment help the management and emergency systems to monitor the exposure places base on the priority factors and find the best approaches to protect the environment.

Keywords: oil spill, modeling, pollution, risk assessment

Procedia PDF Downloads 359
5021 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications

Authors: A. E. Kobryn

Abstract:

We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.

Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution

Procedia PDF Downloads 126
5020 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process

Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari

Abstract:

Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.

Keywords: UML, component, fragment, agile, SPL

Procedia PDF Downloads 369
5019 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications

Authors: Arpan Dwivedi, Yogesh Pahariya

Abstract:

In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.

Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module

Procedia PDF Downloads 219
5018 Rapid Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, complexity, parallelism

Procedia PDF Downloads 507
5017 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 57
5016 Investigation and Analysis of Vortex-Induced Vibrations in Sliding Gate Valves Using Computational Fluid Dynamics

Authors: Kianoosh Ahadi, Mustafa Ergil

Abstract:

In this study, the event of vibrations caused by vortexes and the distribution of induced hydrodynamic forces due to vortexes on the sliding gate valves has been investigated. For this reason, a sliding valve with the help of computational fluid dynamics (CFD) software was simulated in two-dimensional )2D(, where the flow and turbulence equations were solved for three different valve openings (full, half, and 16.7 %) models. The variety of vortexes formed within the vicinity of the valve structure was investigated based on time where the trend of fluctuations and their occurrence regions have been detected. From the gathered solution dataset of the numerical simulations, the pressure coefficient (CP), the lift force coefficient (CL), the drag force coefficient (CD), and the momentum coefficient due to hydrodynamic forces (CM) were examined, and relevant figures were generated were from these results, the vortex-induced vibrations were analyzed.

Keywords: induced vibrations, computational fluid dynamics, sliding gate valves, vortexes

Procedia PDF Downloads 84