Search results for: automatic attendance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1055

Search results for: automatic attendance

665 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases

Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

Abstract:

This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.

Keywords: conceptual modelling, JSON, NoSQL databases, requirements engineering, software development

Procedia PDF Downloads 378
664 Chaupadi Practice: A Cruel Discrimination against Women a Case Study of Achham District of Nepal

Authors: Santosh Thapa, Sankar Gurung

Abstract:

Chaupadi is a tradition widely practiced in the far and mid-western region of Nepal. It is a practice where girls and women are not allowed to inter the house and touch the food, water and milk during their menstruation period of 4-7 days. They have to spend all the nights during the period in a specific hut (Chhaupadi Goth) which is a bit far from their residence where they faces various kinds of risk and violence like bullying, snakes and insect bite, wild animal attack etc. Sometimes the girls even do not go to school during their menstruation periods. After childbirth, the woman must stay in a cow shed for 11 days in such Chhaupadi practiced areas. This study limits the Achham district of the far western region which is the most vulnerable Chhaupadi practicing district. Several governmental and non-governmental organizations have been involving and spending huge amount of money for capacity building and awareness raising campaign for last 2 decades but still 9 out of 75 Village Development Committees (VDCs) have been partially practicing Chaupadi in the district. This study shows that the school attendance rate of the girls during the period have visibly increased which helps to increase the number of the girl graduation as well. Similarly, the practice of Chhaupadi is one of the reasons for increasing the number of cases of uterus prolapsus and poor reproductive health of women and girls. Triggering tools are the one of the best ways to accelerate the awareness campaign in the VDCs. This study recommends that the local bodies should coordinate and lead the overall awareness campaign program to sustain the Chaupadi free VDCs.

Keywords: awareness campaign, chaupadi practice, gender discrimination, violence

Procedia PDF Downloads 310
663 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation

Authors: Mario Kubek, Herwig Unger

Abstract:

Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.

Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation

Procedia PDF Downloads 282
662 Grain Boundary Detection Based on Superpixel Merges

Authors: Gaokai Liu

Abstract:

The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.

Keywords: grain boundary detection, image segmentation, material images, region merging

Procedia PDF Downloads 169
661 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 352
660 Influence of Instructional Supervision on Teachers Performance in Secondary Schools in Otukpo LGA of Benue State

Authors: A. Aloga, A. S. Aloga

Abstract:

The study examined the influence of instructional supervision on teachers’ performance in secondary schools in Otukpo LGA of Benue State. The study was guided by four research questions and four hypotheses. The study employed a descriptive research design. The population of the study comprised of 579 teachers in 26 public secondary schools out of which 236 respondents were sampled and used as the studied population. The instrument used for data collection was a structured questionnaire, titled ‘Instructional Supervision and Teachers Performance Questionnaire (ISTPQ)’ The data was analyzed using descriptive statistics of mean and standard deviation to answer the research questions. And Chi-Square Statistics was used to test the hypotheses at 0.05 level of significance. The study found that instructional supervision has a significant influence on teachers’ lesson planning, effective teaching, teachers’ class attendance and teachers’ classroom management. The study concluded that instructional supervision influences teachers’ performance. It was recommended that; instructional supervisors should always give useful suggestions as regards the best instructional practices needed by teachers in enhancing lesson planning. The government should recruit more trained and qualified instructional supervisors to be able to meet the intending demands of instructional supervision. This will relieve the existing few qualified instructional supervisors from work overload which may result to ineffectiveness and poor performance of their duties. Conferences and seminars should be organized for instructional supervisors from time to time to cater for the professional assistance needed by teachers. The state government should always provide adequate funding for these conferences and seminars since it provides an avenue for acquiring new knowledge in educational development by teachers among others.

Keywords: influence, instructional supervision, teachers’ performance, secondary schools

Procedia PDF Downloads 141
659 Secondary Prisonization and Mental Health: A Comparative Study with Elderly Parents of Prisoners Incarcerated in Remote Jails

Authors: Luixa Reizabal, Inaki Garcia, Eneko Sansinenea, Ainize Sarrionandia, Karmele Lopez De Ipina, Elsa Fernandez

Abstract:

Although the effects of incarceration in prisons close to prisoners’ and their families’ residences have been studied, little is known about the effects of remote incarceration. The present study shows the impact of secondary prisonization on mental health of elderly parents of Basque prisoners who are incarcerated in prisons located far away from prisoners’ and their families’ residences. Secondary prisonization refers to the effects that imprisonment of a family member has on relatives. In the study, psychological effects are analyzed by means of comparative methodology. Specifically, levels of psychopathology (depression, anxiety, and stress) and positive mental health (psychological, social, and emotional well-being) are studied in a sample of parents over 65 years old of prisoners incarcerated in prisons located a long distance away (concretely, some of them in a distance of less than 400 km, while others farther than 400 km) from the Basque Country. The dataset consists of data collected through a questionnaire and from a spontaneous speech recording. The statistical and automatic analyses show that levels of psychopathology and positive mental health of elderly parents of prisoners incarcerated in remote jails are affected by the incarceration of their sons or daughters. Concretely, these parents show higher levels of depression, anxiety, and stress and lower levels of emotional (but not psychological or social) wellbeing than parents with no imprisoned daughters or sons. These findings suggest that parents with imprisoned sons or daughters suffer the impact of secondary prisonization on their mental health. When comparing parents with sons or daughters incarcerated within 400 kilometers from home and parents whose sons or daughters are incarcerated farther than 400 kilometers from home, the latter present higher levels of psychopathology, but also higher levels of positive mental health (although the difference between the two groups is not statistically significant). These findings might be explained by resilience. In fact, in traumatic situations, people can develop a force to cope with the situation, and even present a posttraumatic growth. Bearing in mind all these findings, it could be concluded that secondary prisonization implies for elderly parents with sons or daughters incarcerated in remote jails suffering and, in consequence, that changes in the penitentiary policy applied to Basque prisoners are required in order to finish this suffering.

Keywords: automatic spontaneous speech analysis, elderly parents, machine learning, positive mental health, psychopathology, remote incarceration, secondary prisonization

Procedia PDF Downloads 287
658 Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study

Authors: Pia Wetzl

Abstract:

The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use.

Keywords: blended learning, higher education, teachers, student learning, qualitative research

Procedia PDF Downloads 69
657 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 487
656 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm

Authors: Mohamed Mahmoud

Abstract:

This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.

Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication

Procedia PDF Downloads 120
655 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 121
654 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 297
653 Tracing Digital Traces of Phatic Communion in #Mooc

Authors: Judith Enriquez-Gibson

Abstract:

This paper meddles with the notion of phatic communion introduced 90 years ago by Malinowski, who was a Polish-born British anthropologist. It explores the phatic in Twitter within the contents of tweets related to moocs (massive online open courses) as a topic or trend. It is not about moocs though. It is about practices that could easily be hidden or neglected if we let big or massive topics take the lead or if we simply follow the computational or secret codes behind Twitter itself and third party software analytics. It draws from media and cultural studies. Though at first it appears data-driven as I submitted data collection and analytics into the hands of a third party software, Twitonomy, the aim is to follow how phatic communion might be practised in a social media site, such as Twitter. Lurking becomes its research method to analyse mooc-related tweets. A total of 3,000 tweets were collected on 11 October 2013 (UK timezone). The emphasis of lurking is to engage with Twitter as a system of connectivity. One interesting finding is that a click is in fact a phatic practice. A click breaks the silence. A click in one of the mooc website is actually a tweet. A tweet was posted on behalf of a user who simply chose to click without formulating the text and perhaps without knowing that it contains #mooc. Surely, this mechanism is not about reciprocity. To break the silence, users did not use words. They just clicked the ‘tweet button’ on a mooc website. A click performs and maintains connectivity – and Twitter as the medium in attendance in our everyday, available when needed to be of service. In conclusion, the phatic culture of breaking silence in Twitter does not have to submit to the power of code and analytics. It is a matter of human code.

Keywords: click, Twitter, phatic communion, social media data, mooc

Procedia PDF Downloads 412
652 Problem Solving Courts for Domestic Violence Offenders: Duluth Model Application in Spanish-Speaking Offenders

Authors: I. Salas-Menotti

Abstract:

Problem-solving courts were created to assist offenders with specific needs that were not addressed properly in traditional courts. Problem-solving courts' main objective is to pursue solutions that will benefit the offender, the victim, and society as well. These courts were developed as an innovative response to deal with issues such as drug abuse, mental illness, and domestic violence. In Brooklyn, men who are charged with domestic violence related offenses for the first time are offered plea bargains that include the attendance to a domestic abuse intervention program as a condition to dismiss the most serious charges and avoid incarceration. The desired outcome is that the offender will engage in a program that will modify his behavior avoiding new incidents of domestic abuse, it requires accountability towards the victim and finally, it will hopefully bring down statistic related to domestic abuse incidents. This paper will discuss the effectiveness of the Duluth model as applied to Spanish-speaking men mandated to participate in the program by the specialized domestic violence courts in Brooklyn. A longitudinal study was conducted with 243 Spanish- speaking men who were mandated to participated in the men's program offered by EAC in Brooklyn in the years 2016 through 2018 to determine the recidivism rate of domestic violence crimes. Results show that the recidivism rate was less than 5% per year after completing the program which indicates that the intervention is effective in preventing new abuse allegations and subsequent arrests. It's recommended that comparative study with English-speaking participants is conducted to determine cultural and language variables affecting the program's efficacy.

Keywords: domestic violence, domestic abuse intervention programs, Problem solving courts, Spanish-speaking offenders

Procedia PDF Downloads 132
651 Automatic MC/DC Test Data Generation from Software Module Description

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.

Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage

Procedia PDF Downloads 441
650 Parental Involvement and Students' Outcomes: A Study in a Special Education School in Singapore

Authors: E. Er, Y. S. Cheng

Abstract:

The role of parents and caregivers in their children’s education is pivotal. Parental involvement (PI) is often associated with a range of student outcomes. This includes academic achievements, socioemotional development, adaptive skills, physical fitness and school attendance. This study is the first in Singapore to (1) explore the relationship between parental involvement and student outcomes; (2) determine the effects of family structure and socioeconomic status (SES) on parental involvement and (3) investigate factors that inform involvement in parents of children with specific developmental disabilities. Approval for the study was obtained from Nanyang Technological University’s Institutional Review Board in Singapore. The revised version of a comprehensive theoretical model on parental involvement was used as the theoretical framework in this study. Parents were recruited from a SPED school in Singapore which caters to school-aged children (7 to 21 years old). Pearson’s product moment correlation, analysis of variance and multiple regression analyses were used as statistical techniques in this study. Results indicate that there are significant associations between parental involvement and educational outcomes in students with developmental disabilities. Next, SES has a significant impact on levels of parental involvement. In addition, parents in the current study reported being more involved at home, in school activities and the community, when teachers specifically requested their involvement. Home-based involvement was also predicted by parents’ perceptions of their time and energy, efficacy and beliefs in supporting their child’s education, as well as their children’s invitations to be more involved. An interesting and counterintuitive inverse relationship was found between general school invitations and parental involvement at home. Research findings are further discussed, and suggestions are put forth to increase involvement for this specific group of parents.

Keywords: autism, developmental disabilities, intellectual disabilities, parental involvement, Singapore

Procedia PDF Downloads 201
649 MCERTL: Mutation-Based Correction Engine for Register-Transfer Level Designs

Authors: Khaled Salah

Abstract:

In this paper, we present MCERTL (mutation-based correction engine for RTL designs) as an automatic error correction technique based on mutation analysis. A mutation-based correction methodology is proposed to automatically fix the erroneous RTL designs. The proposed strategy combines the processes of mutation and assertion-based localization. The erroneous statements are mutated to produce possible fixes for the failed RTL code. A concurrent mutation engine is proposed to mitigate the computational cost of running sequential mutants operators. The proposed methodology is evaluated against some benchmarks. The experimental results demonstrate that our proposed method enables us to automatically locate and correct multiple bugs at reasonable time.

Keywords: bug localization, error correction, mutation, mutants

Procedia PDF Downloads 280
648 The Impact of Financial Literacy, Perception of Debt, and Perception of Risk Toward Student Willingness to Use Online Student Loan

Authors: Irni Rahmayani Johan, Ira Kamelia

Abstract:

One of the impacts of the rapid advancement of technology is the rise of digital finance, including peer-to-peer lending (P2P). P2P lending has been widely marketed, including an online student loan that used the P2P platform. This study aims to analyze the effect of financial literacy, perception of debt, and perception of risk toward student willingness to use the online student loan (P2P lending). Using a cross-sectional study design, in collecting the data this study employed an online survey method, with a total sample of 280 undergraduate students of IPB university, Indonesia. This study found that financial literacy, perception of debt, perception of risk, and interest in using online student loans are categorized as low level. While the level of knowledge is found to be the lowest, the first-year students showed a higher level in terms of willingness to use the online student loan. In addition, the second year students recorded a positive perception toward debt. This study showed that level of study, attendance in personal finance course, and student’ GPA is positively related to financial knowledge. While debt perception is negatively related to financial attitudes. Similarly, the negative relationship is found between risk perception and the willingness to use the online student loan. The determinant factor of the willingness to use online student loans is the level of study, debt perception, financial risk perception, and time risk perception. Students with a higher level of study are more likely to have a lower interest in using online student loans. Moreover, students who perceived debt as a financial stimulator, as well as those with higher level of financial risk perceptions and time risk perceptions, tend to show more interest to use the loan.

Keywords: financial literacy, willingness to use, online student loan, perception of risk, perception of debt

Procedia PDF Downloads 144
647 Arabic Text Classification: Review Study

Authors: M. Hijazi, A. Zeki, A. Ismail

Abstract:

An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.

Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations

Procedia PDF Downloads 426
646 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 347
645 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS

Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba

Abstract:

One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.

Keywords: basic science and technology, MOODLE LMS, performance, quality assurance

Procedia PDF Downloads 303
644 Railway Ballast Volumes Automated Estimation Based on LiDAR Data

Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert

Abstract:

The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.

Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point

Procedia PDF Downloads 109
643 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 73
642 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of high-performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice river catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: flood prediction process, high performance computing, online flood prediction system, parallelization

Procedia PDF Downloads 492
641 Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector

Authors: Nabilah Ibrahim, Hafiz Mohd Zaini, Wan Fatin Liyana Mutalib

Abstract:

Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image

Keywords: ultrasound 3D images, axial and lateral resolution, asymmetric reflector, Arduino software

Procedia PDF Downloads 560
640 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 222
639 Violence and Challenges in the Pamir Hindu Kush: A Study of the Impact of Change on a Central but Unknown Region

Authors: Skander Ben Mami

Abstract:

Despite its particular patterns and historical importance, the remote region of the Pamir Hindu Kush still lacks public recognition, as well as scientific substance, because of the abundance of classical state-centred geopolitical studies, the resilience of (inter)national narratives, and the political utility of the concepts of 'Central Asia' and 'South Asia'. However, this specific region of about 100 million inhabitants and located at the criss-cross of four geopolitical areas (Indian, Iranian, Chinese and Russian) over a territory of half a million square kilometres features a string of patterns that set it apart from the neighbouring areas of the Fergana, the Gansu and Punjab. Moreover, the Pamir Hindu Kush undergoes a series of parallel social and economic transformations that deserve scrutiny for their strong effect on the people’s lifestyle, particularly in three major urban centres (Aksu in China, Bukhara in Uzbekistan and Islamabad in Pakistan) and their immediate rural surroundings. While the involvement of various public and private stakeholders (States, NGOs, civil movements, private firms…) has undeniably resulted in positive elements (economic growth, connectivity, higher school attendance), it has in the same time generated a collection of negative effects (radicalizing, inequalities, pollution, territorial divide) that need to be addressed to strengthen regional and international security. This paper underscores the region’s strategical importance as the major hotbed and engine of insecurity and violence in Asia, notably in the context of Afghanistan’s enduring violence. It introduces the inner structures of the region, the different sources of violence as well as the governments’ responses to address it.

Keywords: geography, security, terrorism, urbanisation

Procedia PDF Downloads 138
638 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness

Procedia PDF Downloads 491
637 Intelligent Ambulance with Advance Features of Traffic Management and Telecommunication

Authors: Mamatha M. N.

Abstract:

Traffic problems, congested traffic, and flow management were recognized as major problems mostly in all the areas, which have caused a problem for the ambulance which carries the emergency patient. The proposed paper aims in the development of ambulance which reaches the nearby hospital faster even in heavy traffic scenario. This process is activated by implementing hardware in an ambulance as well as in traffic post thus allowing a smooth flow to the ambulance to reach the hospital in time. 1) The design of the vehicle to have a communication between ambulance and traffic post. 2)Electronic Health Record with Data-acquisition system 3)Telemetry of acquired biological parameters to the nearest hospital. Thus interfacing all these three different modules and integrating them on the ambulance could reach the hospital earlier than the present ambulance. The system is accurate and efficient of 99.8%.

Keywords: bio-telemetry, data acquisition, patient database, automatic traffic control

Procedia PDF Downloads 315
636 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 310