Search results for: architectural modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4493

Search results for: architectural modeling

4103 Structuralism of Architectural Details in the Design of Modern High-Rise Buildings

Authors: Joanna Pietrzak, Anna Stefanska, Wieslaw Rokicki

Abstract:

Contemporary high-rise buildings constructed in recent years are often tremendous examples of original and unique architectural forms, being at the same time the affirmation of technical and technological progress accomplishments. The search for more efficient, sophisticated generations of structures also concerns the shaping of high-quality details. The concept of structural detail designing is connected with the rationalization of engineering solutions as well as through the optimisation and reduction of used material. Contemporary structural detail perceived through the development of building technologies is often a very aesthetic technical and material solution, which significantly influences the visual perception of architecture. Structural details are more often seen in shaping the forms of high-rise buildings, which are erected in many culturally different countries.

Keywords: aesthetic expression, high-rise buildings, structural detail, tall buildings

Procedia PDF Downloads 144
4102 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 254
4101 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt

Authors: Moustafa Osman

Abstract:

Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.

Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning

Procedia PDF Downloads 338
4100 Pharmacokinetic Modeling of Valsartan in Dog following a Single Oral Administration

Authors: In-Hwan Baek

Abstract:

Valsartan is a potent and highly selective antagonist of the angiotensin II type 1 receptor, and is widely used for the treatment of hypertension. The aim of this study was to investigate the pharmacokinetic properties of the valsartan in dogs following oral administration of a single dose using quantitative modeling approaches. Forty beagle dogs were randomly divided into two group. Group A (n=20) was administered a single oral dose of valsartan 80 mg (Diovan® 80 mg), and group B (n=20) was administered a single oral dose of valsartan 160 mg (Diovan® 160 mg) in the morning after an overnight fast. Blood samples were collected into heparinized tubes before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12 and 24 h following oral administration. The plasma concentrations of the valsartan were determined using LC-MS/MS. Non-compartmental pharmacokinetic analyses were performed using WinNonlin Standard Edition software, and modeling approaches were performed using maximum-likelihood estimation via the expectation maximization (MLEM) algorithm with sampling using ADAPT 5 software. After a single dose of valsartan 80 mg, the mean value of maximum concentration (Cmax) was 2.68 ± 1.17 μg/mL at 1.83 ± 1.27 h. The area under the plasma concentration-versus-time curve from time zero to the last measurable concentration (AUC24h) value was 13.21 ± 6.88 μg·h/mL. After dosing with valsartan 160 mg, the mean Cmax was 4.13 ± 1.49 μg/mL at 1.80 ± 1.53 h, the AUC24h was 26.02 ± 12.07 μg·h/mL. The Cmax and AUC values increased in proportion to the increment in valsartan dose, while the pharmacokinetic parameters of elimination rate constant, half-life, apparent of total clearance, and apparent of volume of distribution were not significantly different between the doses. Valsartan pharmacokinetic analysis fits a one-compartment model with first-order absorption and elimination following a single dose of valsartan 80 mg and 160 mg. In addition, high inter-individual variability was identified in the absorption rate constant. In conclusion, valsartan displays the dose-dependent pharmacokinetics in dogs, and Subsequent quantitative modeling approaches provided detailed pharmacokinetic information of valsartan. The current findings provide useful information in dogs that will aid future development of improved formulations or fixed-dose combinations.

Keywords: dose-dependent, modeling, pharmacokinetics, valsartan

Procedia PDF Downloads 275
4099 Slovenian Spatial Legislation over Time and Its Issues

Authors: Andreja Benko

Abstract:

Article presents a short overview of the architects’ profession over time with outlined work of the architectural theoreticians. In the continuation is described a former affiliation of Slovenia as well as the spatial planning documents that were in use until the Slovenia joint Yugoslavia (last part in 1919). This legislation from former Austro-Hungarian monarchy was valid almost until 1950 in some parts of Yugoslavia even longer. Upon that will be mentioned some valid Slovenian spatial documents which will be compared with the German legislation. Analysed will be the number of architect and spatial planners in Slovenia and also their number upon certain region in Slovenia. Based on that will be given also the number from statistical office of Slovenia of the number of buildings between years 2007 and 2012, and described also the collapse of the major construction companies in Slovenia and consequences of that. At the end will be outlined the morality and ethics by spatial interventions and lack of the architectural law in Slovenia as well as the problematic of minimal collaboration between the Ministry of infrastructure and spatial planning with the profession.

Keywords: architect, history, legislation, Slovenia

Procedia PDF Downloads 338
4098 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 53
4097 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.

Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation

Procedia PDF Downloads 99
4096 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel

Authors: Seyed Abolhasan Naeini, M. Mortezaee

Abstract:

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method

Procedia PDF Downloads 114
4095 Modeling of the Cavitation by Bubble around a NACA0009 Profile

Authors: L. Hammadi, D. Boukhaloua

Abstract:

In this study, a numerical model was developed to predict cavitation phenomena around a NACA0009 profile. The equations of the Rayleigh-Plesset and modified Rayleigh-Plesset are used to modeling the cavitation by bubble around a NACA0009 profile. The study shows that the distributions of pressures around extrados and intrados of profile for angle of incidence equal zero are the same. The study also shows that the increase in the angle of incidence makes it possible to differentiate the pressures on the intrados and the extrados.

Keywords: cavitation, NACA0009 profile, flow, pressure coefficient

Procedia PDF Downloads 152
4094 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD

Procedia PDF Downloads 173
4093 Modeling the Current and Future Distribution of Anthus Pratensis under Climate Change

Authors: Zahira Belkacemi

Abstract:

One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. In this study, we used maximum-entropy niche modeling (Maxent) to predict the current and future distribution of Anthus pratensis using climatic variables. The results showed that the species would not be highly affected by the climate change in shifting its distribution; however, the results of this study should be improved by taking into account other predictors, and that the NATURA 2000 protected sites will be efficient at 42% in protecting the species.

Keywords: anthus pratensis, climate change, Europe, species distribution model

Procedia PDF Downloads 110
4092 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb

Authors: Sebai Amal, Massuel Sylvain

Abstract:

Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.

Keywords: Hydrodynamic modeling, lithological modeling, hydraulic, semi-arid, merguellil, central Tunisia

Procedia PDF Downloads 740
4091 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 71
4090 Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas

Authors: J.Zambrano Nájera, M.Gómez Valentín

Abstract:

Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them.

Keywords: erosion, hydrologic modeling, urban runoff, sediment modeling, sediment yielding, urban planning

Procedia PDF Downloads 325
4089 Overview of Research Contexts about XR Technologies in Architectural Practice

Authors: Adeline Stals

Abstract:

The transformation of architectural design practices has been underway for almost forty years due to the development and democratization of computer technology. New and more efficient tools are constantly being proposed to architects, amplifying a technological wave that sometimes stimulates them, sometimes overwhelms them, depending essentially on their digital culture and the context (socio-economic, structural, organizational) in which they work on a daily basis. Our focus is on VR, AR, and MR technologies dedicated to architecture. The commercialization of affordable headsets like the Oculus Rift, the HTC Vive or more low-tech like the Google CardBoard, makes it more accessible to benefit from these technologies. In that regard, researchers report the growing interest of these tools for architects, given the new perspectives they open up in terms of workflow, representation, collaboration, and client’s involvement. However, studies rarely mention the consequences of the sample studied on results. Our research provides an overview of VR, AR, and MR researches among a corpus of papers selected from conferences and journals. A closer look at the sample of these research projects highlights the necessity to take into consideration the context of studies in order to develop tools truly dedicated to the real practices of specific architect profiles. This literature review formalizes milestones for future challenges to address. The methodology applied is based on a systematic review of two sources of publications. The first one is the Cumincad database, which regroups publications from conferences exclusively about digital in architecture. Additionally, the second part of the corpus is based on journal publications. Journals have been selected considering their ranking on Scimago. Among the journals in the predefined category ‘architecture’ and in Quartile 1 for 2018 (last update when consulted), we have retained the ones related to the architectural design process: Design Studies, CoDesign, Architectural Science Review, Frontiers of Architectural Research and Archnet-IJAR. Beside those journals, IJAC, not classified in the ‘architecture’ category, is selected by the author for its adequacy with architecture and computing. For all requests, the search terms were ‘virtual reality’, ‘augmented reality’, and ‘mixed reality’ in title and/or keywords for papers published between 2015 and 2019 (included). This frame time is defined considering the fast evolution of these technologies in the past few years. Accordingly, the systematic review covers 202 publications. The literature review on studies about XR technologies establishes the state of the art of the current situation. It highlights that studies are mostly based on experimental contexts with controlled conditions (pedagogical, e.g.) or on practices established in large architectural offices of international renown. However, few studies focus on the strategies and practices developed by offices of smaller size, which represent the largest part of the market. Indeed, a European survey studying the architectural profession in Europe in 2018 reveals that 99% of offices are composed of less than ten people, and 71% of only one person. The study also showed that the number of medium-sized offices is continuously decreasing in favour of smaller structures. In doing so, a frontier seems to remain between the worlds of research and practice, especially for the majority of small architectural practices having a modest use of technology. This paper constitutes a reference for the next step of the research and for further worldwide researches by facilitating their contextualization.

Keywords: architectural design, literature review, SME, XR technologies

Procedia PDF Downloads 90
4088 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance

Procedia PDF Downloads 406
4087 Enhancing Sustainability of Residential Buildings: A Case Study of Al-Malaz District, Riyadh, Saudi Arabia

Authors: Jenin Zidan

Abstract:

This research paper investigates how planning, urban design, and architectural decisions affect the long-term environmental sustainability of residential buildings. The study, which focuses on the Al-Malaz District in Riyadh, Saudi Arabia, looks into how strategic planning, innovative urban design, and sustainable architectural practices might help mitigate environmental concerns and promote sustainable development in rapidly growing cities. This study attempts to shed light on the interplay of urban planning, design, and architecture in constructing sustainable residential environments by conducting a thorough examination of case studies and empirical data.

Keywords: urban planning, sustainable architecture, urban environmental challenge, residential buildings, villa house type

Procedia PDF Downloads 14
4086 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 319
4085 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 322
4084 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 70
4083 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller

Authors: Sanjay Kumar, Lillie Dewan

Abstract:

The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.

Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller

Procedia PDF Downloads 170
4082 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 469
4081 Hope as a Predictor for Complicated Grief and Anxiety: A Bayesian Structural Equational Modeling Study

Authors: Bo Yan, Amy Y. M. Chow

Abstract:

Bereavement is recognized as a universal challenging experience. It is important to gather research evidence on protective factors in bereavement. Hope is considered as one of the protective factors in previous coping studies. The present study aims to add knowledge by investigating hope at the first month after death to predict psychological symptoms altogether including complicated grief (CG), anxiety, and depressive symptoms at the seventh month. The data were collected via one-on-one interview survey in a longitudinal project with Hong Kong hospice users (sample size 105). Most participants were at their middle age (49-year-old on average), female (72%), with no religious affiliation (58%). Bayesian Structural Equation Modeling (BSEM) analysis was conducted on the longitudinal dataset. The BSEM findings show that hope at the first month of bereavement negatively predicts both CG and anxiety symptoms at the seventh month but not for depressive symptoms. Age and gender are controlled in the model. The overall model fit is good. The current study findings suggest assessing hope at the first month of bereavement. Hope at the first month after the loss is identified as an excellent predictor for complicated grief and anxiety symptoms at the seventh month. The result from this sample is clear, so it encourages cross-cultural research on replicated modeling and development of further clinical application. Particularly, practical consideration for early intervention to increase the level of hope has the potential to reduce the psychological symptoms and thus to improve the bereaved persons’ wellbeing in the long run.

Keywords: anxiety, complicated grief, depressive symptoms, hope, structural equational modeling

Procedia PDF Downloads 174
4080 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite

Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke

Abstract:

The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.

Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element

Procedia PDF Downloads 422
4079 Designing an Enterprise Architecture for Mining Company by Using Togaf Framework

Authors: Rika Yuliana, Budi Rahardjo

Abstract:

The Role of ICT in the organization will continue to experience growth in line with business growth. However, in reality, there is a gap between ICT initiatives with the development (needs) of company business that is caused by yet inadequate of ICT strategic alignment. Therefore, this study was conducted with the aim to create an enterprise architectural model rule, particularly in mining companies, using the TOGAF framework. The results from the design development phase of the mining enterprise architecture meta model represents the domain of business, applications, data, and technology. The results of the design as a whole were analyzed from four perspectives, namely the perspective of contextual, conceptual, logical and physical. In the end, the quality assessment of the mining enterprise architecture is conducted to assess the suitability of the design standards and architectural principles.

Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)

Procedia PDF Downloads 417
4078 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 510
4077 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling

Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid

Abstract:

Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.

Keywords: energy transition, energy modeling, uncertainty, sustainability

Procedia PDF Downloads 54
4076 Power System Modeling for Calculations in Frequency and Steady State Domain

Authors: G. Levacic, A. Zupan

Abstract:

Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.

Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E

Procedia PDF Downloads 297
4075 Architecture, Politics and Religion Synthesis: Political Legitimacy in Early Islamic Iran

Authors: Fahimeh Ghorbani, Alam Saleh

Abstract:

Ideology, politics and art have always been omnipresent patterns of Islam since its early age. The Islamic empire, expanded from China to Andalusia, has instrumentalized art and architecture to enhance political legitimacy of different dynasties or states throughout its history. Quranic verses utilized to convey ideological messages in the major mosques and mausoleums. Iranians had already been employing art and architecture to propagate their political legitimacy prior to Islam. The land of Iran and its art with strong civilizational pre-Islamic history has been profoundly politicized since the rise of Islam in the region. Early Islamic period in Iran has witnessed introduction of a new architectural language, new formulas for spatial configuration in built spaces, as well as new system of architectural decoration. Studying Iran’s Early Islamic architecture helps in better understanding the process of socio-political identity making of Iranian-Islamic culture, and thus art and architecture. This period also set the stage for formation of glorious architectural movements through Persianate world in later periods. During the Early Islamic period in Iran, the innovative combination of Islamic ideology and Iranian Architecture created formidable ideological tools in politicizing art in the region and beyond. As such, this paper aims to investigate the political history and architectural legacy from late Sassanid to Early Islamic period, delves into the ways in which Early Islamic architecture played role in transforming Persian concepts of kingship, administration, and social organization. In so doing, the study focuses on the Perso-Islamic architectural synthesis under the Samanids and Seljuk dynasty as case studies. The paper also explores how the newly introduced Islamic architecture has been employed to address the question of political legitimacy and to propagate states’ political agenda in early Islamic Iran (650-1250). As for the existing literature, despite its uniqueness and significance, Early Islamic architecture of Iran has received little scholarly attention. However, there exists a sizeable body of scholarship on socio-historic condition of the land of Iran during Early Islamic period which provide a solid base for the project. Methodologically speaking, the authors look into the subject through various lenses. They will conduct historic and archival research in libraries, private collections, and archives in Iran and the related neighbouring countries in Persian, Arabic and English. The methods of visual and formal analysis are applied to examine architectural features of the period. There are also a high number of intriguing, yet poorly examined, published and unpublished documents, old plans, drawings and photos of monuments preserved in Cultural Heritage of Iran Organization which will be consulted.

Keywords: Iran, Islamic architecture, early Islamic Iran, early Islamic architecture, politicized art, political legitimacy, propaganda, aesthetics

Procedia PDF Downloads 98
4074 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 275