Search results for: air quality prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11727

Search results for: air quality prediction

11337 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 64
11336 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 78
11335 Impact of E-Commerce Logistics Service Quality on Online Customer Satisfaction in UAE

Authors: Leena Wanganoo

Abstract:

In this digital age with the mushrooming of online companies across the globe has led to an unprecedented new business model. The frequency of online purchasing varies across the globe, but trend shows a steep upward movement. From Generation X to the Millennial the consumer not only wants to order the product with the click of mouse but also very demanding service quality during pre to post-transaction stage. The existing research examines the impact of website quality on the on behavioral intentions in e-services customers and has not adequately recognized the quality of e-commerce logistics perceived by the customer.In order to address this gap, this study examines the relationship among the logistics service quality, satisfaction, and loyalty. Drawing upon a sample of 350 millennial customers from various regions of UAE will work within the framework of structural equation modeling (SEM). Finally, the study would use Importance-Performance analysis (IPA) to discuss the relations of the level of customers’ expected logistics service quality and level of customers’ perceived logistics serviced quality.

Keywords: logistics service quality, customer satisfaction, loyalty, electronic commerce

Procedia PDF Downloads 170
11334 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing

Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin

Abstract:

Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.

Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling

Procedia PDF Downloads 444
11333 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
11332 Effect of Drying on the Concrete Structures

Authors: A. Brahma

Abstract:

The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.

Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling

Procedia PDF Downloads 368
11331 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 384
11330 Quality Tools for Shaping Quality of Learning and Teaching in Education and Training

Authors: Renga Rao Krishnamoorthy, Raihan Tahir

Abstract:

The quality of classroom learning and teaching delivery has been and will continue to be debated at various levels worldwide. The regional cooperation programme to improve the quality and labour market orientation of the Technical and Vocational Education and Training (RECOTVET), ‘Deutsche Gesellschaft für Internationale Zusammenarbeit’ (GIZ), in line with the sustainable development goals (SDG), has taken the initiative in the development of quality TVET in the ASEAN region by developing the Quality Toolbox for Better TVET Delivery (Quality Toolbox). This initiative aims to provide quick and practical materials to trainers, instructors, and personnel involved in education and training at an institute to shape the quality of classroom learning and teaching. The Quality Toolbox for Better TVET Delivery was developed in three stages: literature review and development, validation, and finalization. Thematic areas in the Quality Toolbox were derived from collective input of concerns and challenges raised from experts’ workshops through moderated sessions involving representatives of TVET institutes from 9 ASEAN Member States (AMS). The sessions were facilitated by professional moderators and international experts. TVET practitioners representing AMS further analysed and discussed the structure of the Quality Toolbox and content of thematic areas and outlined a set of specific requirements and recommendations. The application exercise of the Quality Toolbox was carried out by TVET institutes among ASM. Experience sharing sessions from participating ASEAN countries were conducted virtually. The findings revealed that TVET institutes use two types of approaches in shaping the quality of learning and teaching, which is ascribed to inductive or deductive, shaping of quality in learning and teaching is a non-linear process and finally, Q-tools can be adopted and adapted to shape the quality of learning and teaching at TVET institutes in the following: improvement of the institutional quality, improvement of teaching quality and improvement on the organisation of learning and teaching for students and trainers. The Quality Toolbox has good potential to be used at education and training institutes to shape quality in learning and teaching.

Keywords: AMS, GIZ, RECOTVET, quality tools

Procedia PDF Downloads 129
11329 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy

Authors: Chaluntorn Vichasilp, Sutee Wangtueai

Abstract:

This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.

Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)

Procedia PDF Downloads 382
11328 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems

Authors: Eze R. Onukwugha

Abstract:

The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.

Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling

Procedia PDF Downloads 78
11327 Software Reliability Prediction Model Analysis

Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability

Procedia PDF Downloads 464
11326 The Impact of Governance on Happiness: Evidence from Quantile Regressions

Authors: Chiung-Ju Huang

Abstract:

This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as “developed countries” and “developing countries”. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for “developed countries”, while is insignificant for “developing countries”. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness.

Keywords: governance, happiness, multiple regression, quantile regression

Procedia PDF Downloads 281
11325 Guests’ Perceptions of Service Quality Performance in Saudi Hotels: Testing the Relation with Brand Loyalty, and Gender through SERVPERF

Authors: Mohamed Mohsen

Abstract:

The purpose of this study is to explore the level of service quality performance from the perspectives of hotel guests. The aim is to examine hotel guests’ perceptions of service quality performance and its relation with their brand loyalty and gender. The study utilized the instrument of SERVPERF developed by Cronin and Taylor (1992) to measure service quality performance. The study was conducted in three upscale hotels in Saudi Arabia. The study found that service quality performance is significantly correlated to both brand loyalty and gender of hotel guests. The study also found that loyal and female hotel guests have perceptions of service quality performance than do non-loyal and male hotel guests. This research is the first empirical study in the Middle East that links service quality performance with brand loyalty and gender of hotel guests.

Keywords: service quality, SERVPERF, customer satisfaction, brand loyalty, gender

Procedia PDF Downloads 348
11324 Simulation of Glass Breakage Using Voronoi Random Field Tessellations

Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert

Abstract:

Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.

Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification

Procedia PDF Downloads 160
11323 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
11322 Transdisciplinary Attitude in the Classroom: Producing Quality of Being

Authors: Marie-Laure Mimoun-Sorel

Abstract:

Scholars concerned with the destiny of human species point out that our future will not only depend on progress made in technology and sciences but above all it will depend on human progress understood as quality of being. Teachers are significant force in developing a knowledgeable, creative, productive and democratic society. The values that underpin their profession are integrity, respect and responsibility. Therefore, being a teacher in the context of the 21st century requires embracing a Transdisciplinary Attitude which is about venturing within, between, across and beyond disciplines in order to bring forth quality of being in every learning process. In this article, the Transdisciplinary Attitude is defined and its benefits are shown through examples of Transdisciplinary inquiries in an Australian school. Finally, the conclusion invites to reflect on quality of teaching in regard to the development of individual autonomy, community participation and awareness of belonging to the human species.

Keywords: human progress, quality of being, quality of teaching, transdisciplinary attitude in education

Procedia PDF Downloads 370
11321 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS

Authors: A. Daftari, W. Kudla

Abstract:

Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.

Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM

Procedia PDF Downloads 310
11320 Service Quality Improvement in Ghana's Healthcare Supply Chain

Authors: Ammatu Alhassan

Abstract:

Quality healthcare delivery is a crucial indicator in assessing the overall developmental status of a country. There are many limitations in the Ghanaian healthcare supply chain due to the lack of studies about the correlation between quality health service and the healthcare supply chain. Patients who visit various healthcare providers face unpleasant experiences such as delays in the availability of their medications. In this study, an assessment of the quality of services provided to Ghanaian outpatients who visit public healthcare providers was investigated to establish its effect on the healthcare supply chain using a conceptual model. The Donabedian’s structure, process, and outcome theory for service quality evaluation were used to analyse 20 Ghanaian hospitals. The data obtained was tested using the structural equation model (SEM). The findings from this research will help us to improve the overall quality of the Ghanaian healthcare supply chain. The model which will be developed will help us to understand better the linkage between quality healthcare and the healthcare supply chain as well as serving as a reference tool for future healthcare research in Ghana.

Keywords: Ghana, healthcare, outpatients, supply chain

Procedia PDF Downloads 186
11319 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery

Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang

Abstract:

Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.

Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram

Procedia PDF Downloads 77
11318 Integrated Best Worst PROMETHEE to Evaluate Public Transport Service Quality

Authors: Laila Oubahman, Duleba Szabolcs

Abstract:

Public transport stakeholders aim to increase the ridership ratio by encouraging citizens to use common transportation modes. For this sight, improving service quality is a crucial option to reach the quality desired by users and reduce the gap between desired and perceived quality. Multi-criteria decision aid has been applied in literature in recent decades because it provides efficient models to assess the most impacting criteria on the overall assessment. In this paper, the PROMETHEE method is combined with the best-worst approach to construct a consensual model that avoids rank reversal to support stakeholders in ameliorating service quality.

Keywords: best-worst method, MCDA, PROMETHEE, public transport

Procedia PDF Downloads 208
11317 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73
11316 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 627
11315 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler

Authors: Yuichi Kida, Takuro Kida

Abstract:

In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission

Procedia PDF Downloads 122
11314 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 317
11313 Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield

Authors: Norul Husna A. Kasim, Siva K. Balasundram

Abstract:

The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications.

Keywords: anthocyanin, flavonoid fluorescence sensor, palm oil yield and quality

Procedia PDF Downloads 809
11312 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person

Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito

Abstract:

A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.

Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation

Procedia PDF Downloads 251
11311 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 91
11310 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 36
11309 Dynamic Model Conception of Improving Services Quality in Railway Transport

Authors: Eva Nedeliakova, Jaroslav Masek, Juraj Camaj

Abstract:

This article describes the results of research focused on quality of railway freight transport services. Improvement of these services has a crucial importance in customer considering on the future use of railway transport. Processes filling the customer demands and output quality assessment were defined as a part of the research. In this, contribution is introduced the map of quality planning and the algorithm of applied methodology. It characterises a model which takes into account characters of transportation with linking a perception services quality in ordinary and extraordinary operation. Despite the fact that rail freight transport has its solid position in the transport market, lots of carriers worldwide have been experiencing a stagnation for a couple of years. Therefore, specific results of the research have a significant importance and belong to numerous initiatives aimed to develop and support railway transport not only by creating a single railway area or reducing noise but also by promoting railway services. This contribution is focused also on the application of dynamic quality models which represent an innovative method of evaluation quality services. Through this conception, time factor, expected and perceived quality in each moment of the transportation process can be taken into account.

Keywords: quality, railway, transport, service

Procedia PDF Downloads 445
11308 Internal Assessment of Satisfaction with the Quality of the Learning Process

Authors: Bulatbayeva A. A., Maxutova I. O., Ergalieva A. N.

Abstract:

This article presents a study of the practice of self-assessment of the quality of training cadets in a military higher specialized educational institution. The research was carried out by means of a questionnaire survey aimed at identifying the degree of satisfaction of cadets with the organization of the educational process, quality of teaching, the quality of the organization of independent work, and the system of their assessment. In general, the results of the study are of an intermediate nature. Proven tools will be incorporated into the planning and effective management of the learning process. The results of the study can be useful for the administrators and managers of the military education system for teachers of military higher educational institutions for adjusting the content and technologies of training future specialists. The publication was prepared as part of applied grant research for 2020-2022 by order of the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions."

Keywords: teaching quality, quality satisfaction, learning management, quality management, process approach, classroom learning, interactive technologies, teaching quality

Procedia PDF Downloads 127