Search results for: Planck’s constant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2033

Search results for: Planck’s constant

1643 Static Simulation of Pressure and Velocity Behaviour for NACA 0006 Blade Profile of Well’s Turbine

Authors: Chetan Apurav

Abstract:

In this journal the behavioural analysis of pressure and velocity has been done over the blade profile of Well’s turbine. The blade profile that has been taken into consideration is NACA 0006. The analysis has been done in Ansys Workbench under CFX module. The CAD model of the blade profile with certain dimensions has been made in CREO, and then is imported to Ansys for further analysis. The turbine model has been enclosed under a cylindrical body and has been analysed under a constant velocity of air at 5 m/s and zero relative pressure in static condition of the turbine. Further the results are represented in tabular as well as graphical form. It has been observed that the relative pressure of the blade profile has been stable throughout the radial length and hence will be suitable for practical usage.

Keywords: Well's turbine, oscillating water column, ocean engineering, wave energy, NACA 0006

Procedia PDF Downloads 178
1642 Modeling SET Effect on Charge Pump Phase Locked Loop

Authors: Varsha Prasad, S. Sandya

Abstract:

Cosmic Ray effects in microelectronics such as single event effect (SET) and total dose ionization (TID) have been of major concern in space electronics since 1970. Advanced CMOS technologies have demonstrated reduced sensitivity to TID effect. However, charge pump Phase Locked Loop is very much vulnerable to single event transient effect. This paper presents an SET analysis model, where the SET is modeled as a double exponential pulse. The time domain analysis reveals that the settling time of the voltage controlled oscillator (VCO) depends on the SET pulse strength, setting the time constant and the damping factor. The analysis of the proposed SET analysis model is confirmed by the simulation results.

Keywords: charge pump, phase locked loop, SET, VCO

Procedia PDF Downloads 413
1641 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma

Abstract:

In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: heat transfer, radiation, MHD flow, porous medium

Procedia PDF Downloads 416
1640 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 165
1639 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 449
1638 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise

Authors: Mahboobeh Eghtesad, Reza Mohseni

Abstract:

We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.

Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target

Procedia PDF Downloads 330
1637 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz

Authors: A. V. Patil

Abstract:

The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.

Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine

Procedia PDF Downloads 276
1636 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives

Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef

Abstract:

Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.

Keywords: green chemistry, 1H-indole, heteroaromatic, organic electrosynthesis

Procedia PDF Downloads 131
1635 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.

Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation

Procedia PDF Downloads 202
1634 GAC Adsorption Modelling of Metsulfuron Methyl from Water

Authors: Nathaporn Areerachakul

Abstract:

In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone.

Keywords: isotherm, adsorption equilibrium, GAC, metsulfuron methyl

Procedia PDF Downloads 275
1633 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 247
1632 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 560
1631 Application of Data Mining for Aquifer Environmental Assessment

Authors: Saman Javadi, Mehdi Hashemy, Mohahammad Mahmoodi

Abstract:

Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%.

Keywords: clustering, data mining, groundwater, vulnerability assessment

Procedia PDF Downloads 572
1630 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 459
1629 Experimental Study of the Fan Electric Drive Based on a Two-Speed Motor in Dynamic Modes

Authors: Makhsud Bobojanov, Dauletbek Rismukhamedov, Furkat Tuychiev, Khusniddin Shamsutdionov

Abstract:

The article presents the results of experimental study of a two-speed asynchronous motor 4A80B6/4U3 with pole-changing winding on a fan drive VSUN 160x74-0.55-4 in static and dynamic modes. A prototype of a pole-changing Motor was made based on the results of the calculation and the performance and mechanical characteristics of the Motor were removed at the experimental stand, as well as useful capacities and other parameters from both poles were determined. In dynamic mode, the curves of changes of torque and current of the stator were removed by direct start, constant speed operation, by switching of speeds and stopping.

Keywords: two speed motor, pole-changing motor, electric drive of fan, dynamic modes

Procedia PDF Downloads 113
1628 Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives

Authors: S. Sathiyamoorthi, P. Srinivasan, K. Suganya Devi

Abstract:

Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement.

Keywords: DSC and TGA studies, nonlinear optic studies, Fourier Transform Infrared Spectroscopy, UV-vis-NIR spectra

Procedia PDF Downloads 286
1627 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations

Authors: Ming-Kwei Lee, Chih-Feng Yen

Abstract:

The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.

Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S

Procedia PDF Downloads 618
1626 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding

Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak

Abstract:

The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.

Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure

Procedia PDF Downloads 341
1625 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise

Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry

Abstract:

Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.

Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival

Procedia PDF Downloads 270
1624 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 346
1623 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program

Authors: F. Maass, P. Martin, J. Olivares

Abstract:

The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.

Keywords: education, geogebra, ordinary differential equations, resonance

Procedia PDF Downloads 218
1622 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 117
1621 High Temperature in Caustic Pretreatment of Gold Locked in the Residue after Filtration from Gold Cyanidation Leaching

Authors: K. L. Kabemba, R. F. Sandenberg

Abstract:

The usual way to desorb gold is by elution with a hot concentrated alkaline solution of sodium cyanide. The high temperature is necessary because the dielectric constant of water decreases with increasing temperature hence the electrostatic forces between charcoal and the gold cyanide complex decreases. High alkalinity and a high concentration of cyanide are necessary for gold desorption because both OH- and CN- ions are preferentially adsorbed. The rate of elution increases with increasing anion concentration but decreases with increasing cation concentration that means the rate of elution passes through a maximum as the concentration of the eluting salt (NaCN, for example) is increased. The anion that gives the best results, the cyanide ion, decomposes fairly rapidly at elevated temperatures (40% in 6 hours, 90% in 24 hours at 95°C).

Keywords: caustic, cyanide, gold, temperature

Procedia PDF Downloads 362
1620 A Multi Function Myocontroller for Upper Limb Prostheses

Authors: Ayad Asaad Ibrahim

Abstract:

Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.

Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller

Procedia PDF Downloads 340
1619 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester

Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski

Abstract:

Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.

Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex

Procedia PDF Downloads 423
1618 Optimization of Dual Band Antenna on Silicon Substrate

Authors: Syrine lahmadi, Jamel Bel Hadj Tahar

Abstract:

In this paper, a rectangular antenna with slots integrated on silicon substrate operating in 60GHz, is studied and optimized. The effect of different parameter of the antenna (width, length, the position of the microstrip-feed line...) and the parameter of the substrate (the thickness, the dielectric constant) on gain, frequency is presented. Also, the paper presents a solution to ameliorate the bandwidth. The maximum simulated radiation gain of this rectangular dual band antenna is 5, 38 dB around 60GHz. The simulation studied id developed based on advanced design system tools. It is found that the designed antenna is 19 % smaller than a rectangular antenna with the same dimensions. This antenna with dual band can function for many communication systems as automobile or radar.

Keywords: dual band, enlargement of bandwidth, miniaturized antennas, printed antenna

Procedia PDF Downloads 330
1617 Component Comparison of Polyaluminum Chloride Produced from Various Methods

Authors: Wen Po Cheng, Chia Yun Chung, Ruey Fang Yu, Chao Feng Chen

Abstract:

The main objective of this research was to study the differences of aluminum hydrolytic products between two PACl preparation methods. These two methods were the acidification process of freshly formed amorphous Al(OH)3 and the conventional alkalization process of aluminum chloride solution. According to Ferron test and 27Al NMR analysis of those two PACl preparation procedures, the reaction rate constant (k) values and Al13 percentage of acid addition process at high basicity value were both lower than those values of the alkaline addition process. The results showed that the molecular structure and size distribution of the aluminum species in both preparing methods were suspected to be significantly different at high basicity value.

Keywords: polyaluminum chloride, Al13, amorphous aluminum hydroxide, Ferron test

Procedia PDF Downloads 348
1616 Dark Gravity Confronted with Supernovae, Baryonic Oscillations and Cosmic Microwave Background Data

Authors: Frederic Henry-Couannier

Abstract:

Dark Gravity is a natural extension of general relativity in presence of a flat non dynamical background. Matter and radiation fields from its dark sector, as soon as their gravity dominates over our side fields gravity, produce a constant acceleration law of the scale factor. After a brief reminder of the Dark Gravity theory foundations, the confrontation with the main cosmological probes is carried out. We show that, amazingly, the sudden transition between the usual matter dominated decelerated expansion law a(t) ∝ t²/³ and this accelerated expansion law a(t) ∝ t² predicted by the theory should be able to fit the main cosmological probes (SN, BAO, CMB and age of the oldest stars data) but also direct H₀ measurements with two free parameters only: H₀ and the transition redshift.

Keywords: anti-gravity, negative energies, time reversal, field discontinuities, dark energy theory

Procedia PDF Downloads 19
1615 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 208
1614 Elastic and Thermal Behaviour of LaX (X= Cd, Hg) Intermetallics: A DFT Study

Authors: Gitanjali Pagare, Hansa Devi, S. P. Sanyal

Abstract:

Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) and local spin density approximation (LSDA) as the exchange correlation potential to investigate elastic properties of LaX (X = Cd and Hg) in their B2-type (CsCl) crystal structure. The calculated ground state properties such as lattice constant (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') agree well with the available experimental results. The second order elastic constants (C11, C12 and C44) have been calculated. The ductility or brittleness of these intermetallic compounds is predicted by using Pugh’s rule B/GH and Cauchy’s pressure (C12-C44). The calculated results indicate that LaHg is the ductile whereas LaCd is brittle in nature.

Keywords: ductility/brittleness, elastic constants, equation of states, FP-LAPW method, intermetallics

Procedia PDF Downloads 422