Search results for: shunt active filter
229 Assessment of Psychological Needs and Characteristics of Elderly Population for Developing Information and Communication Technology Services
Authors: Seung Ah Lee, Sunghyun Cho, Kyong Mee Chung
Abstract:
Rapid population aging became a worldwide demographic phenomenon due to rising life expectancy and declining fertility rates. Considering the current increasing rate of population aging, it is assumed that Korean society enters into a ‘super-aged’ society in 10 years, in which people aged 65 years or older account for more than 20% of entire population. In line with this trend, ICT services aimed to help elderly people to improve the quality of life have been suggested. However, existing ICT services mainly focus on supporting health or nursing care and are somewhat limited to meet a variety of specialized needs and challenges of this population. It is pointed out that the majority of services have been driven by technology-push policies. Given that the usage of ICT services greatly vary on individuals’ socio-economic status (SES), physical and psychosocial needs, this study systematically categorized elderly population into sub-groups and identified their needs and characteristics related to ICT usage in detail. First, three assessment criteria (demographic variables including SES, cognitive functioning level, and emotional functioning level) were identified based on previous literature, experts’ opinions, and focus group interview. Second, survey questions for needs assessment were developed based on the criteria and administered to 600 respondents from a national probability sample. The questionnaire consisted of 67 items concerning demographic information, experience on ICT services and information technology (IT) devices, quality of life and cognitive functioning, etc. As the result of survey, age (60s, 70s, 80s), education level (college graduates or more, middle and high school, less than primary school) and cognitive functioning level (above the cut-off, below the cut-off) were considered the most relevant factors for categorization and 18 sub-groups were identified. Finally, 18 sub-groups were clustered into 3 groups according to following similarities; computer usage rate, difficulties in using ICT, and familiarity with current or previous job. Group 1 (‘active users’) included those who with high cognitive function and educational level in their 60s and 70s. They showed favorable and familiar attitudes toward ICT services and used the services for ‘joyful life’, ‘intelligent living’ and ‘relationship management’. Group 2 (‘potential users’), ranged from age of 60s to 80s with high level of cognitive function and mostly middle to high school graduates, reported some difficulties in using ICT and their expectations were lower than in group 1 despite they were similar to group 1 in areas of needs. Group 3 (‘limited users’) consisted of people with the lowest education level or cognitive function, and 90% of group reported difficulties in using ICT. However, group 3 did not differ from group 2 regarding the level of expectation for ICT services and their main purpose of using ICT was ‘safe living’. This study developed a systematic needs assessment tool and identified three sub-groups of elderly ICT users based on multi-criteria. It is implied that current cognitive function plays an important role in using ICT and determining needs among the elderly population. Implications and limitations were further discussed.Keywords: elderly population, ICT, needs assessment, population aging
Procedia PDF Downloads 143228 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases
Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus
Abstract:
Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.Keywords: cellulases, LaeA/1, proteomics, secondary metabolites
Procedia PDF Downloads 270227 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity
Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido
Abstract:
Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens
Procedia PDF Downloads 288226 Social Factors That Contribute to Promoting and Supporting Resilience in Children and Youth following Environmental Disasters: A Mixed Methods Approach
Authors: Caroline McDonald-Harker, Julie Drolet
Abstract:
Abstract— In the last six years Canada In the last six years Canada has experienced two major and catastrophic environmental disasters– the 2013 Southern Alberta flood and the 2016 Fort McMurray, Alberta wildfire. These two disasters resulted in damages exceeding 12 billion dollars, the costliest disasters in Canadian history. In the aftermath of these disasters, many families faced the loss of homes, places of employment, schools, recreational facilities, and also experienced social, emotional, and psychological difficulties. Children and youth are among the most vulnerable to the devastating effects of disasters due to the physical, cognitive, and social factors related to their developmental life stage. Yet children and youth also have the capacity to be resilient and act as powerful catalyst for change in their own lives and wider communities following disaster. Little is known, particularly from a sociological perspective, about the specific factors that contribute to resilience in children and youth, and effective ways to support their overall health and well-being. This paper focuses on the voices and experiences of children and youth residing in these two disaster-affected communities in Alberta, Canada and specifically examines: 1) How children and youth’s lives are impacted by the tragedy, devastation, and upheaval of disaster; 2) Ways that children and youth demonstrate resilience when directly faced with the adversarial circumstances of disaster; and 3) The cumulative internal and external factors that contribute to bolstering and supporting resilience among children and youth post-disaster. This paper discusses the characteristics associated with high levels of resilience in 183 children and youth ages 5 to 17 based on quantitative and qualitative data obtained through a mix methods approach. Child and youth participants were administered the Children and Youth Resilience Measure (CYRM-28) in order to examine factors that influence resilience processes including: individual, caregiver, and context factors. The CYRM-28 was then supplemented with qualitative interviews with children and youth to contextualize the CYRM-28 resiliency factors and provide further insight into their overall disaster experience. Findings reveal that high levels of resilience among child and youth participants is associated with both individual factors and caregiver factors, specifically positive outlook, effective communication, peer support, and physical and psychological caregiving. Individual and caregiver factors helped mitigate the negative effects of disaster, thus bolstering resilience in children and youth. This paper discusses the implications that these findings have for understanding the specific mechanisms that support the resiliency processes and overall recovery of children and youth following disaster; the importance of bridging the gap between children and youth’s needs and the services and supports provided to them post-disaster; and the need to develop resiliency processes and practices that empower children and youth as active agents of change in their own lives following disaster. These findings contribute to furthering knowledge about pragmatic and representative changes to resources, programs, and policies surrounding disaster response, recovery, and mitigation.Keywords: children and youth, disaster, environment, resilience
Procedia PDF Downloads 124225 Early Return to Play in Football Player after ACL Injury: A Case Report
Authors: Nicola Milani, Carla Bellissimo, Davide Pogliana, Davide Panzin, Luca Garlaschelli, Giulia Facchinetti, Claudia Casson, Luca Marazzina, Andrea Sartori, Simone Rivaroli, Jeff Konin
Abstract:
The patient is a 26 year-old male amateur football player from Milan, Italy; (81kg; 185cm; BMI 23.6 kg/m²). He sustained a non-contact anterior cruciate ligament tear to his right knee in June 2021. In September 2021, his right knee ligament was reconstructed using a semitendinosus graft. The injury occurred during a football match on natural grass with typical shoes on a warm day (32 degrees celsius). Playing as a defender he sustained the injury during a change of direction, where the foot was fixated on the grass. He felt pain and was unable to continue playing the match. The surgeon approved his rehabilitation to begin two weeks post-operative. The initial physiotherapist assessment determined performing two training sessions per day within the first three months. In the first three weeks, the pain was 4/10 on Numerical Rating Scale (NRS), no swelling, a range of motion was 0-110°, with difficulty fully extending his knee and minimal quadriceps activation. Crutches were discontinued at four weeks with improved walking. Active exercise, electrostimulator, physical therapy, massages, osteopathy, and passive motion were initiated. At week 6, he completed his first functional movement screen; the score was 16/21 with no pain and no swelling. At week 8, the isokinetic test showed a 23% differential deficit between the two legs in maximum strength (at 90°/s). At week 10, he improved to 15% of injury-induced deficit which suggested he was ready to start running. At week 12, the athlete sustained his first threshold test. At week 16, he performed his first return to sports movement assessment, which revealed a 10% stronger difference between the legs. At week 16, he had his second threshold test. At week 17, his first on-field test revealed a 5% differential deficit between the two legs in the hop test. At week 18, isokinetic test demonstrates that the uninjured leg was 7% stronger than the recovering leg in maximum strength (at 90°/s). At week 20, his second on-field test revealed a 2% difference in hop test; at week 21, his third isokinetic test demonstrated a difference of 5% in maximum strength (at 90°/s). At week 21, he performed his second return to sports movement assessment which revealed a 2% difference between the limbs. Since it was the end of the championship, the team asked him to partake in the playoffs; moreover the player was very motivated to participate in the playoffs also because he was the captain of the team. Together with the player and the team, we decided to let him play even though we were aware of a heightened risk of injury than what is reported in the literature because of two factors: biological recovery times and the results of the tests we performed. In the decision making process about the athlete’s recovery time, it is important to balance the information available from the literature with the desires of the patient to avoid frustration.Keywords: ACL, football, rehabilitation, return to play
Procedia PDF Downloads 119224 Small and Medium-Sized Enterprises, Flash Flooding and Organisational Resilience Capacity: Qualitative Findings on Implications of the Catastrophic 2017 Flash Flood Event in Mandra, Greece
Authors: Antonis Skouloudis, Georgios Deligiannakis, Panagiotis Vouros, Konstantinos Evangelinos, Loannis Nikolaou
Abstract:
On November 15th, 2017, a catastrophic flash flood devastated the city of Mandra in Central Greece, resulting in 24 fatalities and extensive damages to the built environment and infrastructure. It was Greece's deadliest and most destructive flood event for the past 40 years. In this paper, we examine the consequences of this event too small and medium-sized enterprises (SMEs) operating in Mandra during the flood event, which were affected by the floodwaters to varying extents. In this context, we conducted semi-structured interviews with business owners-managers of 45 SMEs located in flood inundated areas and are still active nowadays, based on an interview guide that spanned 27 topics. The topics pertained to the disaster experience of the business and business owners-managers, knowledge and attitudes towards climate change and extreme weather, aspects of disaster preparedness and related assistance needs. Our findings reveal that the vast majority of the affected businesses experienced heavy damages in equipment and infrastructure or total destruction, which resulted in business interruption from several weeks up to several months. Assistance from relatives or friends helped for the damage repairs and business recovery, while state compensations were deemed insufficient compared to the extent of the damages. Most interviewees pinpoint flooding as one of the most critical risks, and many connect it with the climate crisis. However, they are either not willing or unable to apply property-level prevention measures in their businesses due to cost considerations or complex and cumbersome bureaucratic processes. In all cases, the business owners are fully aware of the flood hazard implications, and since the recovery from the event, they have engaged in basic mitigation measures and contingency plans in case of future flood events. Such plans include insurance contracts whenever possible (as the vast majority of the affected SMEs were uninsured at the time of the 2017 event) as well as simple relocations of critical equipment within their property. The study offers fruitful insights on latent drivers and barriers of SMEs' resilience capacity to flash flooding. In this respect, findings such as ours, highlighting tensions that underpin behavioral responses and experiences, can feed into a) bottom-up approaches for devising actionable and practical guidelines, manuals and/or standards on business preparedness to flooding, and, ultimately, b) policy-making for an enabling environment towards a flood-resilient SME sector.Keywords: flash flood, small and medium-sized enterprises, organizational resilience capacity, disaster preparedness, qualitative study
Procedia PDF Downloads 132223 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track
Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes
Abstract:
A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.Keywords: white etching layer, arcing, brown etching layer, material characterisation
Procedia PDF Downloads 121222 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering
Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif
Abstract:
In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network
Procedia PDF Downloads 236221 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 173220 Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography
Authors: Radik D. Aglyamov, Alexander K. Naumov, Alexey A. Shavelev, Oleg A. Morozov, Arsenij D. Shishkin, Yury P.Brodnikovsky, Alexander A.Karabutov, Alexander A. Oraevsky, Vadim V. Semashko
Abstract:
The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems.Keywords: medical optoacoustic, endogenic contrast agent, multiwavelength tunable pulse lasers, MOPA laser system
Procedia PDF Downloads 101219 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection
Authors: Node Smith
Abstract:
Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development
Procedia PDF Downloads 44218 Global Service-Learning: Lessons Learned from Teacher Candidates
Authors: Miranda Lin
Abstract:
This project examined the impact of a globally focused service-learning project implemented in a multicultural education course in a Midwestern university. This project facilitated critical self-reflection and build cross-cultural competence while nurturing a partnership with two schools that serve students with disabilities in Vietnam. Through a service-learning project, pre-service teachers connected via Skype with the principals/teachers at schools in Vietnam to identify and subsequently develop needed instructional materials for students with mild, moderate, and severe disabilities. Qualitative data sources include students’ intercultural competence self-reflection survey (pre-test and post-test), reflections, discussions, service project, and lesson plans. Literature Review- Global service-learning is a teaching strategy that encompasses service experiences both in the local community and abroad. Drawing on elements of global learning and international service-learning, global service-learning experiences are guided by a framework that is designed to support global learning outcomes and involve direct engagement with difference. By engaging in real-world challenges, global service-learning experiences can support the achievement of learning outcomes such as civic. Knowledge and intercultural knowledge and competence. Intercultural competence development is considered essential for cooperative and reciprocal engagement with community partners.Method- Participants (n=27*) were mostly elementary and early childhood pre-service teachers who were enrolled in a multicultural education course. All but one was female. Among the pre-service teachers, one Asian American, two Latinas, and the rest were White. Two pre-service teachers identified themselves as from the low socioeconomic families and the rest were from the middle to upper middle class.The global service-learning project was implemented in the spring of 2018. Two Vietnamese schools that served students with disabilities agreed to be the global service-learning sites. Both schools were located in an urban city.Systematic collection of data coincided with the course schedule as follows: an initial intercultural competence self-reflection survey completed in week one, guided reflections submitted in week 1, 9, and 16, written lesson plans and supporting materials for the service project submitted in week 16, and a final intercultural competence self-reflection survey completed in week 16. Significance-This global service-learning project has helped participants meet Merryfield’s goals in various degrees. They 1) learned knowledge and skills in the basics of instructional planning, 2) used a variety of instructional methods that encourage active learning, meet the different learning styles of students, and are congruent with content and educational goals, 3) gained the awareness and support of their students as individuals and as learners, 4) developed questioning techniques that build higher-level thinking skills, and 5) made progress in critically reflecting on and improving their own teaching and learning as a professional educator as a result of this project.Keywords: global service-learning, teacher education, intercultural competence, diversity
Procedia PDF Downloads 117217 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem
Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly
Abstract:
We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard
Procedia PDF Downloads 525216 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)
Authors: Anupalli Roja Rani, Pavithra Dasari
Abstract:
Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.
Procedia PDF Downloads 113215 Selfie: Redefining Culture of Narcissism
Authors: Junali Deka
Abstract:
“Pictures speak more than a thousand words”. It is the power of image which can have multiple meanings the way it is read by the viewers. This research article is an outcome of the extensive study of the phenomenon of‘selfie culture’ and dire need of self-constructed virtual identity among youths. In the recent times, there has been a revolutionary change in the concept of photography in terms of both techniques and applications. The popularity of ‘self-portraits’ mainly depend on the temporal space and time created on social networking sites like Facebook, Instagram. With reference to Stuart’s Hall encoding and decoding process, the article studies the behavior of the users who post photographs online. The photographic messages (Roland Barthes) are interpreted differently by different viewers. The notion of ‘self’, ‘self-love and practice of looking (Marita Sturken) and ways of seeing (John Berger) got new definition and dimensional together. After Oscars Night, show host Ellen DeGeneres’s selfie created the most buzz and hype in the social media. The term was judged the word of 2013, and has earned its place in the dictionary. “In November 2013, the word "selfie" was announced as being the "word of the year" by the Oxford English Dictionary. By the end of 2012, Time magazine considered selfie one of the "top 10 buzzwords" of that year; although selfies had existed long before, it was in 2012 that the term "really hit the big time an Australian origin. The present study was carried to understand the concept of ‘selfie-bug’ and the phenomenon it has created among youth (especially students) at large in developing a pseudo-image of its own. The topic was relevant and gave a platform to discuss about the cultural, psychological and sociological implications of selfie in the age of digital technology. At the first level, content analysis of the primary and secondary sources including newspapers articles and online resources was carried out followed by a small online survey conducted with the help of questionnaire to find out the student’s view on selfie and its social and psychological effects. The newspapers reports and online resources confirmed that selfie is a new trend in the digital media and it has redefined the notion of beauty and self-love. The Facebook and Instagram are the major platforms used to express one-self and creation of virtual identity. The findings clearly reflected the active participation of female students in comparison to male students. The study of the photographs of few selected respondents revealed the difference of attitude and image building among male and female users. The study underlines some basic questions about the desire of reconstruction of identity among young generation, such as - are they becoming culturally narcissist; responsible factors for cultural, social and moral changes in the society, psychological and technological effects caused by Smartphone as well, culminating into a big question mark whether the selfie is a social signifier of identity construction.Keywords: Culture, Narcissist, Photographs, Selfie
Procedia PDF Downloads 407214 Determinants of Life Satisfaction in Canada: A Causal Modelling Approach
Authors: Rose Branch-Allen, John Jayachandran
Abstract:
Background and purpose: Canada is a pluralistic, multicultural society with an ethno-cultural composition that has been shaped over time by immigrants and their descendants. Although Canada welcomes these immigrants, many will endure hardship and assimilation difficulties. Despite these life hurdles, surveys consistently disclose high life satisfaction for all Canadians. Most research studies on Life Satisfaction/ Subjective Wellbeing (SWB) have focused on one main determinant and a variety of social demographic variables to delineate the determinants of life satisfaction. However, very few research studies examine life satisfaction from a holistic approach. In addition, we need to understand the causal pathways leading to life satisfaction, and develop theories that explain why certain variables differentially influence the different components of SWB. The aim this study was to utilize a holistic approach to construct a causal model and identify major determinants of life satisfaction. Data and measures: This study utilized data from the General Social Survey, with a sample size of 19, 597. The exogenous concepts included age, gender, marital status, household size, socioeconomic status, ethnicity, location, immigration status, religiosity, and neighborhood. The intervening concepts included health, social contact, leisure, enjoyment, work-family balance, quality time, domestic labor, and sense of belonging. The endogenous concept life satisfaction was measured by multiple indicators (Cronbach’s alpha = .83). Analysis: Several multiple regression models were run sequentially to estimate path coefficients for the causal model. Results: Overall, above average satisfaction with life was reported for respondents with specific socio-economic, demographic and lifestyle characteristics. With regard to exogenous factors, respondents who were female, younger, married, from high socioeconomic status background, born in Canada, very religious, and demonstrated high level of neighborhood interaction had greater satisfaction with life. Similarly, intervening concepts suggested respondents had greater life satisfaction if they had better health, more social contact, less time on passive leisure activities and more time on active leisure activities, more time with family and friends, more enjoyment with volunteer activities, less time on domestic labor and a greater sense of belonging to the community. Conclusions and Implications: Our results suggest that a holistic approach is necessary for establishing determinants of life satisfaction, and that life satisfaction is not merely comprised of positive or negative affect rather understanding the causal process of life satisfaction. Even though, most of our findings are consistent with previous studies, a significant number of causal connections contradict some of the findings in literature today. We have provided possible explanation for these anomalies researchers encounter in studying life satisfaction and policy implications.Keywords: causal model, holistic approach, life satisfaction, socio-demographic variables, subjective well-being
Procedia PDF Downloads 357213 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions
Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding
Abstract:
By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals
Procedia PDF Downloads 208212 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance
Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens
Abstract:
Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium
Procedia PDF Downloads 66211 A Lung Cancer Patients with Septic Shock Nursing Experience
Authors: Syue-Wen Lin
Abstract:
Objective: This article explores the nursing experience of an 84-year-old male lung cancer patient who underwent a thoracoscopic right lower lobectomy and treatment. The patient has multiple medical histories, including hypertension and diabetes. The nursing process involved cancer treatment, postoperative pain management, as well as wound care and healing. Methods: The nursing period is from February 10 to February 17, 2024. During the nursing process, pain management strategies are implemented, including morphine drugs and non-drug methods, and music therapy, essential oil massage, and extended reception time are used to make patients feel physically and mentally comfortable so as to reduce postoperative pain and encourage active participation in rehabilitation. Strict sterile wound dressing procedures and advanced wound care techniques are used to promote wound healing and prevent infection. Due to septic shock, dialysis is used to relieve worsening symptoms. Taking into account the patient's cancer status, the nursing team provides comprehensive cancer care based on the patient's physical and psychological needs. Given the complexity of the patient's condition, including advanced cancer, palliative care is also incorporated throughout the care process to relieve discomfort and provide psychological support. Results: Through comprehensive health assessment, the nursing team fully understood the patient's condition and developed a personalized care plan based on the patient's condition. The interprofessional critical care team provides respiratory therapy and lung expansion exercises to reduce muscle loss while addressing the patient's psychological status, pain management, and vital sign stabilization needs, resulting in a comprehensive approach to care. Lung expansion exercises and the use of a high-frequency chest wall oscillation vest successfully improved sputum drainage and facilitated weaning from mechanical ventilation. In addition, helping patients stabilize their vital signs and the integration of cancer care, pain management, wound care and palliative care helps the patient be fully supported throughout the recovery process, ultimately improving his quality of life. Conclusion: Lung cancer and septic shock present significant challenges to patients, and the nursing team not only provides critical care but also addresses the unique needs of patients through comprehensive infection control, cancer care, pain management, wound care, and palliative care interventions. These measures effectively improve patients' quality of life, promote recovery, and provide compassionate palliative care for terminally ill patients. Nursing staff work closely with family members to develop a comprehensive care plan to ensure that patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.Keywords: septic shock, lung cancer, palliative care, nursing experience
Procedia PDF Downloads 22210 Self-Healing Coatings and Electrospun Fibers
Authors: M. Grandcolas, N. Rival, H. Bu, S. Jahren, R. Schmid, H. Johnsen
Abstract:
The concept of an autonomic self-healing material, where initiation of repair is integrated to the material, is now being considered for engineering applications and is a hot topic in the literature. Among several concepts/techniques, two are most interesting: i) Capsules: Integration of microcapsules in or at the surface of coatings or fibre-like structures has recently gained much attention. Upon damage-induced cracking, the microcapsules are broken by the propagating crack fronts resulting in a release of an active chemical (healing agent) by capillary action, subsequently repairing and avoiding further crack growth. ii) Self-healing polymers: Interestingly, the introduction of dynamic covalent bonds into polymer networks has also recently been used as a powerful approach towards the design of various intrinsically self-healing polymer systems. The idea behind this is to reconnect the chemical crosslinks which are broken when a material fractures, restoring the integrity of the material and thereby prolonging its lifetime. We propose here to integrate both self-healing concepts (capsules, self-healing polymers) in electrospun fibres and coatings. Different capsule preparation approaches have been investigated in SINTEF. The most advanced method to produce capsules is based on emulsification to create a water-in-oil emulsion before polymerisation. The healing agent is a polyurethane-based dispersion that was encapsulated in shell materials consisting of urea-benzaldehyde resins. Results showed the successful preparation of microcapsules and release of the agent when capsules break. Since capsules are produced in water-in-oil systems we mainly investigated organic solvent based coatings while a major challenge resides in the incorporation of capsules into water-based coatings. We also focused on developing more robust microcapsules to prevent premature rupture of the capsules. The capsules have been characterized in terms of size, and encapsulation and release might be visualized by incorporating fluorescent dyes and examine the capsules by microscopy techniques. Alternatively, electrospinning is an innovative technique that has attracted enormous attention due to unique properties of the produced nano-to-micro fibers, ease of fabrication and functionalization, and versatility in controlling parameters. Especially roll-to-roll electrospinning is a unique method which has been used in industry to produce nanofibers continuously. Electrospun nanofibers can usually reach a diameter down to 100 nm, depending on the polymer used, which is of interest for the concept with self-healing polymer systems. In this work, we proved the feasibility of fabrication of POSS-based (POSS: polyhedral oligomeric silsesquioxanes, tradename FunzioNano™) nanofibers via electrospinning. Two different formulations based on aqueous or organic solvents have shown nanofibres with a diameter between 200 – 450nm with low defects. The addition of FunzioNano™ in the polymer blend also showed enhanced properties in term of wettability, promising for e.g. membrane technology. The self-healing polymer systems developed are here POSS-based materials synthesized to develop dynamic soft brushes.Keywords: capsules, coatings, electrospinning, fibers
Procedia PDF Downloads 261209 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section
Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert
Abstract:
Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics
Procedia PDF Downloads 258208 Implementation of a Culturally Responsive Home Visiting Framework in Head Start Teacher Professional Development
Authors: Meilan Jin, Mary Jane Moran
Abstract:
This study aims to introduce the framework of culturally responsive home visiting (CRHV) to head start teacher professional sessions in the Southeastern of the US and investigate its influence on the evolving beliefs of teachers about their roles and relationships with families in-home visits. The framework orients teachers to an effective way of taking on the role of learner to listen for spoken and unspoken needs and look for family strengths. In addition, it challenges the deficit model that is grounded on 'cultural deprivation,' and it stresses the value of family cultures and advocates equal, collaborative parent-teacher relationships. The home visit reflection papers and focus group transcriptions of eight teachers have been collected since 2010 throughout a five-year longitudinal collaboration with them. Reflection papers were written by the teachers before and after introducing the CRHV framework, including the details of visit purposes and actions and their plans for later home visits. Particularly, the CRHV framework guided the teachers to listen and look for information about family-living environments; parent-child interactions; child-rearing practices; and parental beliefs, values, and needs. Two focus groups were organized in 2014 by asking the teachers to read their written reflection papers and then discussing their shared beliefs and experiences of home visits in recent years. The average length of the discussions was one hour, and the discussions were audio-recorded and transcribed verbatim. Moreover, the data were analyzed using constant comparative analysis, and the analysis was verified through (a) the uses of multiple data sources, (b) the involvement of multiple researchers, (c) coding checks, and (d) the provisions of the thick descriptions of the findings. The study findings corroborate that the teachers become to reposition themselves as 'knowledge seekers' through reorienting their cynosure toward 'setting stones' to learn, grow, and change rather than framing their home visits. The teachers also continually engage in careful listening, observing, questioning, and dialoguing, and these actions reflect their care toward parents. The value of teamwork with parents is advocated, and the teachers recognize that when parents feel empowered, they are active and committed to doing more for their children, which can further advantage proactive long-term parent-teacher collaborations. The study findings also validate that the framework is influential for educators to provide the experiences of home visiting that is culturally responsive and to share collaborative relationships with caregivers. The long-term impact of the framework further implies that teachers continue to put themselves in the position of evolving, including beliefs and actions, to better work with children and families who are culturally, ethnically, and linguistically different from them. This framework can be applicable to educators and professionals who are looking for avenues to bridge the relationship between home and school and parents and teachers.Keywords: culturally responsive home visit, early childhood education, parent–teacher collaboration, teacher professional development
Procedia PDF Downloads 97207 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 122206 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis
Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin
Abstract:
Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis
Procedia PDF Downloads 263205 Chemical and Biological Studies of Kielmeyera coriacea Mart. (Calophyllaceae) Based on Ethnobotanical Survey of Rural Community from Brazil
Authors: Vanessa G. P. Severino, Eliangela Cristina Candida Costa, Nubia Alves Mariano Teixeira Pires Gomides, Lucilia Kato, Afif Felix Monteiro, Maria Anita Lemos Vasconcelos Ambrosio, Carlos Henrique Gomes Martins
Abstract:
One of the biomes present in Brazil is known as Cerrado, which is a vast tropical savanna ecoregion, particularly in the states of Goiás, Mato Grosso do Sul, Mato Grosso, Tocantins and Minas Gerais. Many species of plants are characterized as endemic and they have therapeutic value for a large part of the population, especially to the rural communities. Given that, the southeastern region of the state of Goiás contains about 21 rural communities, which present a form of organization based on the use of natural resources available. One of these rural communities is named of Coqueiros, where the knowledge about the medicinal plants was very important to this research. Thus, this study focuses on the ethnobotanical survey of this community on the use of Kielmeyera coriacea to treat diseases. From the 37 members interviewed, 76% indicated this species for the treatment of intestinal infection, leukemia, anemia, gastritis, gum pain, toothache, cavity, arthritis, arthrosis, healing, vermifuge, rheumatism, antibiotic, skin problems, mycoses and all kinds of infections. The medicinal properties attributed during the interviews were framed in the body system (disease categories), adapted from ICD 10; thus, 20 indications of use were obtained, among five body systems. Therefore, the root of this species was select to chemical and biological (antioxidant and antimicrobial) studies. From the liquid-liquid extraction of ethanolic extract of root (EER), the hexane (FH), ethyl acetate (FAE), and hydro alcoholic (FHA) fractions were obtained. The chemical profile study of these fractions was performed by LC-MS, identifying major compounds such as δ-tocotrienol, prenylated acylphoroglucinol, 2-hydroxy-1-methoxyxanthone and quercitrin. EER, FH, FAE and FHA were submitted to biological tests. FHA presented the best antioxidant action (EC50 201.53 μg mL-1). EER inhibited the bacterial growth of Streptococcus pyogenes and Pseudomonas aeruginosa, microorganisms associated with rheumatism, at Minimum Inhibitory Concentration (MIC) of 6.25 μg mL-1. In addition, the FH-10 subfraction, obtained from FH fractionation, presented MIC of 1.56 μg mL-1 against S. pneumoniae; EER also inhibited the fungus Candida glabrata (MIC 7.81 μg mL- 1). The FAE-4.7.3 fraction, from the fractionation of FAE, presented MIC of 200 μg mL-1 against Lactobacillus casei, which is one of the causes of caries and oral infections. By the correlation of the chemical and biological data, it is possible to note that the FAE-4.7.3 and FH-10 are constituted 4-hydroxy-2,3-methylenedioxy xanthone, 3-hydroxy-1,2-dimethoxy xanthone, lupeol, prenylated acylphoroglucinol and quercitrin, which could be associated with the biological potential found. Therefore, this study provides an important basis for further investigations regarding the compounds present in the active fractions of K. coriacea, which will permit the establishment of a correlation between ethnobotanical survey and bioactivity.Keywords: biological activity, ethnobotanical survey, Kielmeyera coriacea Mart., LC-MS profile
Procedia PDF Downloads 141204 Globalisation and Diplomacy: How Can Small States Improve the Practice of Diplomacy to Secure Their Foreign Policy Objectives?
Authors: H. M. Ross-McAlpine
Abstract:
Much of what is written on diplomacy, globalization and the global economy addresses the changing nature of relationships between major powers. While the most dramatic and influential changes have resulted from these developing relationships the world is not, on deeper inspection, governed neatly by major powers. Due to advances in technology, the shifting balance of power and a changing geopolitical order, small states have the ability to exercise a greater influence than ever before. Increasingly interdependent and ever complex, our world is too delicate to be handled by a mighty few. The pressure of global change requires small states to adapt their diplomatic practices and diversify their strategic alliances and relationships. The nature and practice of diplomacy must be re-evaluated in light of the pressures resulting from globalization. This research examines: how small states can best secure their foreign policy objectives? Small state theory is used as a foundation for exploring the case study of New Zealand. The research draws on secondary sources to evaluate the existing theory in relation to modern practices of diplomacy. As New Zealand lacks the required economic and military power to play an active, influential role in international affairs what strategies are used to exert influence? Furthermore, New Zealand lies in a remote corner of the Pacific and is geographically isolated from its nearest neighbors how does this affect security and trade priorities? The findings note a significant shift since the 1970’s in New Zealand’s diplomatic relations. This shift is arguably a direct result of globalization, regionalism and a growing independence from the traditional bi-lateral relationships. The need to source predictable trade, investment and technology are an essential driving force for New Zealand’s diplomatic relations. A lack of hard power aligns New Zealand’s prosperity with a secure, rules-based international system that increases the likelihood of a stable and secure global order. New Zealand’s diplomacy and prosperity has been intrinsically reliant on its reputation. A vital component of New Zealand’s diplomacy is preserving a reputation for integrity and global responsibility. It is the use of this soft power that facilitates the influence that New Zealand enjoys on the world stage. To weave a comprehensive network of successful diplomatic relationships, New Zealand must maintain a reputation of international credibility. Globalization has substantially influenced the practice of diplomacy for New Zealand. The current world order places economic and military might in the hands of a few, subsequently requiring smaller states to use other means for securing their interests. There are clear strategies evident in New Zealand’s diplomacy practice that draw attention to how other smaller states might best secure their foreign policy objectives. While these findings are limited, as with all case study research, there is value in applying the findings to other small states struggling to secure their interests in the wake of rapid globalization.Keywords: diplomacy, foreign policy, globalisation, small state
Procedia PDF Downloads 396203 Arisarum Vulgare: Bridging Tradition and Science through Phytochemical Characterization and Exploring Therapeutic Potential via in vitro and in vivo Biological Activities
Authors: Boudjelal Amel
Abstract:
Arisarum vulgare, a member of the Araceae family, is an herbaceous perennial widely distributed in the Mediterranean region. A. vulgare is recognized for its medicinal properties and holds significant traditional importance in Algeria for the treatment of various human ailments, including pain, infections, inflammation, digestive disorders, skin problems, eczema, cancer, wounds, burns and gynecological diseases. Despite its extensive traditional use, scientific exploration of A. vulgare remains limited. The study aims to investigate for the first time the therapeutic potential of A. vulgare ethanolic extract obtained by ultrasound-assisted extraction. The chemical composition of the extract was determined by LC-MS/MS analysis. For in vitro phytopharmacological evaluation, several assays, including DPPH, ABTS, FRAP and reducing power, were employed to evaluate the antioxidant activity. The antibacterial activity was assessed againt Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium by disk diffusion and microdilution methods. The possible inhibitory activity of ethanolic extract was analyzed against the cholinesterases enzymes (AChE and BChE). The DNA protection activity of A. vulgare ethanolic extract was estimated using the agarose gel electrophoresis method. The capacities of the extract to protect plasmid DNA (pBR322) from the oxidizing effects of H2O2 and UV treatment were evaluated by their DNA-breaking forms. The in vivo wound healing potential of a traditional ointment containing 5% of A. vulgare ethanolic extract was also investigated. The LC-MS/MS profiling of the extract revealed the presence of various bioactive compounds, including naringenin, chlorogenic, vanillic, cafeic, coumaric acids, trans-cinnamic and trans ferrulic acids. The plant extract presented considerable antioxidant potential, being the most active for Reducing power (0,07326±0.001 mg/ml) and DPPH (0.14±0.004 mg/ml). The extract showed the highest inhibition zone diameter against Enterococcus feacium (36±0.1 mm). The ethanolic extract of A. vulgare suppressed the growth of Staphylococus aureus, Escherichia coli and Salmonella typhimurium according to the MIC values. The extract of the plant significantly inhibited both AChE and BChE enzymes. DNA protection activity of the A. vulgare extract was determined as 90.41% for form I and 51.92% for form II. The in vivo experiments showed that 5% ethanolic extract ointment accelerated the wound healing process. The topical application of the traditional formulation enhanced wound closure (95,36±0,6 %) and improved histological parameters in the treated group compared to the control groups. The promising biological properties of Arisarum vulgare revealed that the plant could be appraised as a potential origin of bioactive molecules having multifunctional medicinal uses.Keywords: arisarum vulgare, LC-MS/MS, antioxidant activity, antimicrobial activity, cholinesterases enzymes inhibition, dna-damage activity, in vivo wound healing
Procedia PDF Downloads 69202 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India
Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena
Abstract:
India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market
Procedia PDF Downloads 42201 Home Garden: A Food-Based Strategy to Achieve Sustainable Impact on Household Nutrition of Resource-Poor Families in Nepal
Authors: Purushottam P. Khatiwada, Bikash Paudel, Ram B. Rana, Parshuram Biswakarma, Roshan Pudasaini
Abstract:
Nepal has been putting its efforts into securing food and nutrition security for its citizens adopting different models and approaches. Home Garden approach, that integrates vegetables, fruits, small livestock, poultry along with other components like fish, honeybee, mushroom, spices for the promotion of nutritional security of resource-poor and disadvantaged groups was implemented during March 2009 to July 2013 spreading over 16 districts of Nepal covering 115 farmers groups, directly working with 3500 households. Sustained long-term impact of development interventions targeted to the resource-poor and disadvantaged groups has been a recurrent issue for donors, policymakers and practitioners alike. Considering the issue, a post-project evaluation was carried out in a selected project group (Dangibari of Jhapa) after four years of project completion in 2017 in order to evaluate the impact and understand the factors associated with its success. Qualitative information was collected through focus group discussion with group members and associated local institutions. For quantitative information, a quick survey was carried out to the same group members only selecting few indicators. The results are compared with the data obtained from the baseline study conducted by the project in March 2009. The impact of project intervention was evident as compared to the benchmarks established during the baseline, even after four years of project completion. The area under home garden is increased to 729 m² from 386 m² and average food self-sufficiency months increased to 10.22 from 8.11. Seven to eleven fruit species are maintained in the home gardens. An average number of vegetable species grown increased to 15.85 from 9.86. It has resulted in an increase in vegetables self-sufficient month to 8.74 from 4.74 and a huge increase in cash income NPR 6142.8 (USD 59.6) from NPR 385.7 (USD 3.9) from the sale of surplus vegetables. Coaching and mentoring including nutrition sensitization by the project staff at the beginning, inputs and technical support during the project implementation phase and projects effort on the institutional building of disadvantaged farmers were the key drivers of home garden sustainability and expansion. Specifically, package of home garden management trainings provided by the project staff, availability of group funds for buying inputs even after the project, uniting home garden group members in a cooperative, resource leveraging by local institutions through group lobbying, farmers innovations for maintaining home garden diversity and continuous backstopping support by few active members as local resource persons to other members are some additional factors contributing to sustain and/or improve the home garden status by the resource-poor and disadvantaged group.Keywords: food-based nutrition, home garden, resource-poor and disadvantaged group, sustained impact
Procedia PDF Downloads 145200 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System
Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold
Abstract:
In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber
Procedia PDF Downloads 147