Search results for: energy efficiency measures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15974

Search results for: energy efficiency measures

11834 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 430
11833 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage

Authors: M. Iommi, G. Losco

Abstract:

Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.

Keywords: energy building design tools, solar access analysis, solar potential, urban planning

Procedia PDF Downloads 334
11832 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries

Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu

Abstract:

Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.

Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure

Procedia PDF Downloads 123
11831 Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers

Authors: Alireza Zabihi, Saeed Peyghami, Hossein Mokhtari

Abstract:

With the increasing deployment of renewable power plants, such as solar and wind, it is crucial to measure the harmonic situation of the grid. This paper proposes a global voltage harmonic index to measure the harmonic situation of the power grid with a focus on power transformers. The power electronics systems used to connect these plants to the network can introduce harmonics, leading to increased losses, reduced efficiency, false operation of protective relays, and equipment damage due to harmonic intensifications. The proposed index considers the losses caused by harmonics in power transformers which are of great importance and value to the network, providing a comprehensive measure of the harmonic situation of the grid. The effectiveness of the proposed index is evaluated on a real-world distribution network, and the results demonstrate its ability to identify the harmonic situation of the network, particularly in relation to power transformers. The proposed index provides a comprehensive measure of the harmonic situation of the grid, taking into account the losses caused by harmonics in power transformers. The proposed index has the potential to support power companies in optimizing their power systems and to guide researchers in developing effective mitigation strategies for harmonics in the power grid.

Keywords: global voltage harmonic index, harmonics, power grid, power quality, power transformers, renewable energy

Procedia PDF Downloads 113
11830 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 187
11829 Exploring the State of Leadership Effectiveness of Tertiary Institutions in Nigeria

Authors: Ojeka Alexandra

Abstract:

The study investigated the leadership effectiveness of leaders of tertiary institutions in Nigeria. The study sought to examine the leadership styles adopted, the leadership energy and effectiveness of the leaders of two tertiary institutions. The research was undertaken at two institutions, one Polytechnic and one University. The population of the study was the lecturers and the heads of departments of the two institutions. The leadership matrix and leadership effectiveness index questionnaires were employed to collect quantitative and qualitative data. The preferred and practiced styles were compared and contrasted to determine whether or not they were used to achieve goals and objectives of the lecturers and the organizations. The recommendations contribute towards the academic and professional development of the lecturers and their institutions.

Keywords: leadership, leadership effectiveness, leadership energy, tertiary institutions, and leadership styles

Procedia PDF Downloads 277
11828 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 122
11827 The Ongoing Impact of Secondary Stressors on Businesses in Northern Ireland Affected by Flood Events

Authors: Jill Stephenson, Marie Vaganay, Robert Cameron, Caoimhe McGurk, Neil Hewitt

Abstract:

Purpose: The key aim of the research was to identify the secondary stressors experienced by businesses affected by single or repeated flooding and to determine to what extent businesses were affected by these stressors, along with any resulting impact on health. Additionally, the research aimed to establish the likelihood of businesses being re-exposed to the secondary stressors through assessing awareness of flood risk, implementation of property protection measures and level of community resilience. Design/methodology/approach: The chosen research method involved the distribution of a questionnaire survey to businesses affected by either single or repeated flood events. The questionnaire included the Impact of Event Scale (a 15-item self-report measure which assesses subjective distress caused by traumatic events). Findings: 55 completed questionnaires were returned by flood impacted businesses. 89% of the businesses had sustained internal flooding while 11% had experienced external flooding. The results established that the key secondary stressors experienced by businesses, in order of priority, were: flood damage, fear of reoccurring flooding, prevention of access to the premise/closure, loss of income, repair works, length of closure and insurance issues. There was a lack of preparedness for potential future floods and consequent vulnerability to the emergence of secondary stressors among flood affected businesses, as flood resistance or flood resilience measures had only been implemented by 11% and 13% respectively. In relation to the psychological repercussions, the Impact of Event scores suggested that potential prevalence of post-traumatic stress disorder (PTSD) was noted among 8 out of 55 respondents (l5%). Originality/value: The results improve understanding of the enduring repercussions of flood events on businesses, indicating that not only residents may be susceptible to the detrimental health impacts of flood events and single flood events may be just as likely as reoccurring flooding to contribute to ongoing stress. Lack of financial resources is a possible explanation for the lack of implementation of property protection measures among businesses, despite 49% experiencing flooding on multiple occasions. Therefore it is recommended that policymakers should consider potential sources of financial support or grants towards flood defences for flood impacted businesses. Any form of assistance should be made available to businesses at the earliest opportunity as there was no significant association between the time of the last flood event and the likelihood of experiencing PTSD symptoms.

Keywords: flood event, flood resilience, flood resistance, PTSD, secondary stressors

Procedia PDF Downloads 421
11826 Discriminant Analysis of Pacing Behavior on Mass Start Speed Skating

Authors: Feng Li, Qian Peng

Abstract:

The mass start speed skating (MSSS) is a new event for the 2018 PyeongChang Winter Olympics and will be an official race for the 2022 Beijing Winter Olympics. Considering that the event rankings were based on points gained on laps, it is worthwhile to investigate the pacing behavior on each lap that directly influences the ranking of the race. The aim of this study was to detect the pacing behavior and performance on MSSS regarding skaters’ level (SL), competition stage (semi-final/final) (CS) and gender (G). All the men's and women's races in the World Cup and World Championships were analyzed in the 2018-2019 and 2019-2020 seasons. As a result, a total of 601 skaters from 36 games were observed. ANOVA for repeated measures was applied to compare the pacing behavior on each lap, and the three-way ANOVA for repeated measures was used to identify the influence of SL, CS, and G on pacing behavior and total time spent. In general, the results showed that the pacing behavior from fast to slow were cluster 1—laps 4, 8, 12, 15, 16, cluster 2—laps 5, 9, 13, 14, cluster 3—laps 3, 6, 7, 10, 11, and cluster 4—laps 1 and 2 (p=0.000). For CS, the total time spent in the final was less than the semi-final (p=0.000). For SL, top-level skaters spent less total time than the middle-level and low-level (p≤0.002), while there was no significant difference between the middle-level and low-level (p=0.214). For G, the men’s skaters spent less total time than women on all laps (p≤0.048). This study could help to coach staff better understand the pacing behavior regarding SL, CS, and G, further providing references concerning promoting the pacing strategy and decision making before and during the race.

Keywords: performance analysis, pacing strategy, winning strategy, winter Olympics

Procedia PDF Downloads 188
11825 Influence of CA, SR and BA Substitution on lafeo3Performances During Chemical Looping Processes

Authors: Rong Sun, Laihong Shen

Abstract:

La-based perovskite oxygen carriers, especially the doped-La(M)FeO₃, showed excellent performances during chemical looping processes. However, the mechanisms of the undoped and doped La(M)FeO₃ are not clear at present, making the mechanisms clear may help the development of chemical looping technologies. In this paper, the method based on the density function theory (DFT) was used to analysis the influence of Ca, Sr, and Ba doping of La on the electronic structure, while the CO oxidation mechanisms on the surface of LaFeO₃ and Ca-doped LaFeO₃ oxygen carriers were also analyzed. The results showed that the band gap was decreased by the doping of low valence. While the doping of low valence element Ca, Sr, and Ba at La site simultaneously resulted to the moving of the valence band toward high energy and made the valence band cross the Fermi energy level. This was resulted from the holes generated by divalent ion substitution. The holes can change the total magnetization from antiferromagnet to weakly ferromagnetism. The calculation results about the formation of oxygen vacancy showed that substitutions of Ca, Sr, and Ba caused a large drop in oxygen vacancy formation energy, indicating that the bulk oxygen transport was improved. Based on the optimized bulk of the undoped and Ca-doped LaFeO₃(010) surface, the CO adsorption was analyzed. The results indicated that the adsorption energy increased by divalent ion substitution, meaning that the adsorption stability decreased. The results can provide a certain theoretical basis for the development of perovskite oxides in chemical looping technologies.

Keywords: chemical looping technologies, lanthanum ferrate (LaFeO₃), divalent ion substitution, CO oxidation

Procedia PDF Downloads 95
11824 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 295
11823 Water Efficiency: Greywater Recycling

Authors: Melissa Lubitz

Abstract:

Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.

Keywords: greywater, wastewater treatment, water conservation, circular water society

Procedia PDF Downloads 54
11822 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 339
11821 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 203
11820 Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator

Authors: Himani Ratna Dahiya

Abstract:

This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.

Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator

Procedia PDF Downloads 581
11819 Thorium Resources of Georgia – Is It Its Future Energy ?

Authors: Avtandil Okrostsvaridze, Salome Gogoladze

Abstract:

In the light of exhaustion of hydrocarbon reserves of new energy resources, its search is of vital importance problem for the modern civilization. At the time of energy resource crisis, the radioactive element thorium (232Th) is considered as the main energy resource for the future of our civilization. Modern industry uses thorium in high-temperature and high-tech tools, but the most important property of thorium is that like uranium it can be used as fuel in nuclear reactors. However, thorium has a number of advantages compared to this element: Its concentration in the earth crust is 4-5 times higher than uranium; extraction and enrichment of thorium is much cheaper than of uranium; it is less radioactive; its waste products complete destruction is possible; thorium yields much more energy than uranium. Nowadays, developed countries, among them India and China, have started intensive work for creation of thorium nuclear reactors and intensive search for thorium reserves. It is not excluded that in the next 10 years these reactors will completely replace uranium reactors. Thorium ore mineralization is genetically related to alkaline-acidic magmatism. Thorium accumulations occur as in endogen marked as in exogenous conditions. Unfortunately, little is known about the reserves of this element in Georgia, as planned prospecting-exploration works of thorium have never been carried out here. Although, 3 ore occurrences of this element are detected: 1) In the Greater Caucasus Kakheti segment, in the hydrothermally altered rocks of the Lower Jurassic clay-shales, where thorium concentrations varied between 51 - 3882g/t; 2) In the eastern periphery of the Dzirula massif, in the hydrothermally alteration rocks of the cambrian quartz-diorite gneisses, where thorium concentrations varied between 117-266 g/t; 3) In active contact zone of the Eocene volcanites and syenitic intrusive in Vakijvari ore field of the Guria region, where thorium concentrations varied between 185 – 428 g/t. In addition, geological settings of the areas, where thorium occurrences were fixed, give a theoretical basis on possible accumulation of practical importance thorium ores. Besides, the Black Sea Guria region magnetite sand which is transported from Vakijvari ore field, should contain significant reserves of thorium. As the research shows, monazite (thorium containing mineral) is involved in magnetite in the form of the thinnest inclusions. The world class thorium deposit concentrations of this element vary within the limits of 50-200 g/t. Accordingly, on the basis of these data, thorium resources found in Georgia should be considered as perspective ore deposits. Generally, we consider that complex investigation of thorium should be included into the sphere of strategic interests of the state, because future energy of Georgia, will probably be thorium.

Keywords: future energy, Georgia, ore field, thorium

Procedia PDF Downloads 484
11818 Thermal Instability in Solid under Irradiation

Authors: P. Selyshchev

Abstract:

Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.

Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability

Procedia PDF Downloads 262
11817 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 466
11816 Coastal Vulnerability under Significant Sea Level Rise: Risk and Adaptation Measures for Mumbai

Authors: Malay Kumar Pramanik

Abstract:

Climate change induced sea level rise increases storm surge, erosion, and inundation, which are stirred by an intricate interplay of physical environmental components at the coastal region. The Mumbai coast is much vulnerable to accelerated regional sea level change due to its highly dense population, highly developed economy, and low topography. To determine the significant causes behind coastal vulnerability, this study analyzes four different iterations of CVI by incorporating the pixel-based differentially weighted rank values of the selected five geological (CVI5), three physical (CVI8 with including geological variables), and four socio-economic variables (CVI4). However, CVI5 and CVI8 results yielded broadly similar natures, but after including socio-economic variables (CVI4), the results CVI (CVI12) has been changed at Mumbai and Kurla coastal portion that indicates the study coastal areas are mostly sensible with socio-economic variables. Therefore, the results of CVI12 show that out of 274.1 km of coastline analyzed, 55.83 % of the coast is very low vulnerable, 60.91 % of the coast is moderately vulnerable while 50.75 % is very high vulnerable. Finding also admits that in the context of growing urban population and the increasing rate of economic activities, socio-economic variables are most important variable to use for validating and testing the CVI. Finally, some recommendations are presented for concerned decision makers and stakeholders to develop appropriate coastal management plans, nourishment projects and mitigation measures considering socio-economic variables.

Keywords: coastal vulnerability index, sea level change, Mumbai coast, geospatial approach, coastal management, climate change

Procedia PDF Downloads 124
11815 Fabrication of Miniature Gear of Hastelloy X by WEDM Process

Authors: Bhupinder Singh, Joy Prakash Misra

Abstract:

This article provides the information regarding machining of hastelloy-X on wire electro spark machining (WEDM). Experimental investigation has been carried out by varying pulse-on time (TON), pulse-off time (TOFF), peak current (IP) and spark gap voltage (SV). Effect of these parameters is studied on material removal rate (MRR). Experiments are designed as per box-behnken design (BBD) technique of response surface methodology (RSM). Analysis of variance (ANOVA) results indicates that TON, TOFF, IP, SV, TON x IP are significant parameters that influenced the MRR, and it is depicted that value of MRR is more at high discharge energy (HDE) and less at low discharge energy (LDE). Furthermore, miniature impeller and miniature gear (OD≤10MM) is fabricated by WEDM at optimized condition.

Keywords: advanced manufacturing, WEDM, super alloy, gear

Procedia PDF Downloads 215
11814 Appearance and Magnitude of Dynamic Pressure in Micro-Scale of Subsonic Airflow around Symmetric Objects

Authors: Shehret Tilvaldyev, Jorge Flores-Garay, Alfredo Villanueva, Erwin Martinez, Lazaro Rico

Abstract:

The efficiency of modern transportation is severely compromised by the prevalence of turbulent drag. The high level of turbulent skin-friction occurring, e.g., on the surface of an aircraft, automobiles or the carriage of a high-speed train, is responsible for excess fuel consumption and increased carbon emissions. The environmental, political, and economic pressure to improve fuel efficiency and reduce carbon emissions associated with transportation means that reducing turbulent skin-friction drag is a pressing engineering problem. The dynamic pressure of subsonic airflow around solid objects creates lift, but also induces drag force. This paper is presenting the results of laboratory experiments, investigating appearance and magnitude of dynamic pressure in micro scale of subsonic air flow around right cylinder and symmetrical airfoil.

Keywords: airflow, dynamic pressure, micro scale, symmetric object

Procedia PDF Downloads 369
11813 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 93
11812 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 75
11811 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: cotton, bract, harvester, carpel

Procedia PDF Downloads 129
11810 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 144
11809 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich

Authors: Lauren M. Cook, Tove A. Larsen

Abstract:

Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.

Keywords: co-benefit estimation, green cities, green roofs, solar panels

Procedia PDF Downloads 94
11808 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)

Authors: Andreas Rüdiger

Abstract:

The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.

Keywords: wastewater treatment, biofiltration, touristic areas, energy saving

Procedia PDF Downloads 81
11807 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 316
11806 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 144
11805 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 113