Search results for: inductively coupled mass spectrometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4847

Search results for: inductively coupled mass spectrometry

737 Fatty Acid Profile and Dietary Fibre Contents of Some Standardized Soups and Dishes Consumed in Nigeria

Authors: Olufunke O. Obanla, Oluseye O. Onabanjo, Silifat A. Sanni, Mojisola O. Adegunwa, Wasiu A. O. Afolabi, Omolola O. Oyawoye, Atinuke Titilola Lano-Maduagu

Abstract:

Background: Dietary fat is implicated in the increasing development of chronic diseases in developing countries while dietary fibre plays a major role in the management of these diseases. Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. Methods: Representative samples of standardized Nigerian soups and dishes were analyzed for fatty acids using gas chromatography-mass spectrophotometry (GC-MS) and dietary fibre using an enzymatic-gravimetric standard method of AOAC. Results: The total Saturated Fatty acids (SFAs) ranged from 0.74+0.3g/100g to 73.82+0.07g/100g. The total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) ranged from 2.16+1.13g/100g for Yam pottage to 22.25+0.58g/100g for Okazi soup and eba, and from 0.42+0.10g/100g for Yam pottage to 10.22+0.1g/100g for Pounded yam with egusi ball soup, respectively. Trans fat was observed in Alapafubu and Tuwo shinkafa (2.80+0.2g/100g), Yam pottage (0.20+0.15g/100g), Steamed bean pudding (1.28+0.53g/100g) and Ikokore (5.33+0.41g/100g). The Total Dietary Fibre (TDF) contents of the dishes ranged from 12.95+2.99g/100g in Jollof rice to 62.00+0.94g/100g in Melon seed and vegetable soup, the Soluble Dietary Fibre (SDF) ranged from 2.05+0.32g/100g in Steamed bean pudding to 7.81+0.74g/100g in Ikokore while the Insoluble Dietary Fibre (IDF) ranged from 8.20+0.43g/100g in Jollof rice to 57.91+4.69g/100g in melon seed and vegetable soup. Conclusions: The study has indicated that some Nigerian dishes are characterized by high SFAs, TFAs and dietary fibre, moderate MUFAs and very low levels of PUFAs. High levels of SFAs in some soups and dishes are a major public health concern.

Keywords: healthy diet, dietary fibre, fatty acid profile, chronic diseases, Nigerian dishes

Procedia PDF Downloads 353
736 Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography

Authors: Radik D. Aglyamov, Alexander K. Naumov, Alexey A. Shavelev, Oleg A. Morozov, Arsenij D. Shishkin, Yury P.Brodnikovsky, Alexander A.Karabutov, Alexander A. Oraevsky, Vadim V. Semashko

Abstract:

The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems.

Keywords: medical optoacoustic, endogenic contrast agent, multiwavelength tunable pulse lasers, MOPA laser system

Procedia PDF Downloads 89
735 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 131
734 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 21
733 Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification

Authors: Rosemary Anibogwu, Kavita Sharma, Karl De Jesus

Abstract:

Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study.

Keywords: HPLC, nuclear magnetic resonance spectroscopy, sagebrush, sesquiterpene lactones

Procedia PDF Downloads 111
732 Smart Transportation: Bringing Back Sunshine City Harare

Authors: R. Shayamapiki

Abstract:

This study explores the applicability of applying new urbanism principles in cities of developing countries as a panacea towards building sustainable cities through implementing smart transportation. Smart transportation approach to planning has been growing remarkably around the globe in the past decade. In conquest to curb traffic congestion and reducing automobile dependency in the inner-city Harare, Smart Transportation has been a strong drive towards building sustainable cities. Conceptually, Smart Transportation constitutes of principles which include walking, cycling and mass transit. The Smart Transportation approach has been a success story in the cities of developing world but its application in the cities of developing countries has been doubtful. Cities of developing countries being multifaceted with several urban sustainability challenges, the study consolidates that there are no robust policy, legislative and institutional frameworks to govern the application of Smart Transportation in urban planning hence no clear roadway towards its success story. Questions regarding this investigation proliferate to; how capable are cities of developing countries to transform Smart Transportation principles to a success story? What victory can Smart Transportation bring to sustainable urban development? What are constraints of embracing the principles and how can they be manipulated? Methodologically the case study of urban syntax in Harare Central Business District and arterial roads of the city, legislation and institutional settings underpins various research outcomes. The study finds out the hindrances of policy, legislative and institutional incapacities cooked with economic constraints, lack of political will and technically inflexible zoning regulations. The study also elucidates that there is need to adopt a localized approach to Smart Transportation. The paper then calls for strengthening of institutional and legal reform in conquest to embrace the concept, policy and legislative support, feasible financial mechanism, coordination of responsible stakeholders, planning standards and regulatory frameworks reform to celebrate the success story of Smart Transportation in the developing world.

Keywords: inner-city Harare, new urbanism, smart transportation, sustainable cities

Procedia PDF Downloads 459
731 Prediction of the Dark Matter Distribution and Fraction in Individual Galaxies Based Solely on Their Rotation Curves

Authors: Ramzi Suleiman

Abstract:

Recently, the author proposed an observationally-based relativity theory termed information relativity theory (IRT). The theory is simple and is based only on basic principles, with no prior axioms and no free parameters. For the case of a body of mass in uniform rectilinear motion relative to an observer, the theory transformations uncovered a matter-dark matter duality, which prescribes that the sum of the densities of the body's baryonic matter and dark matter, as measured by the observer, is equal to the body's matter density at rest. It was shown that the theory transformations were successful in predicting several important phenomena in small particle physics, quantum physics, and cosmology. This paper extends the theory transformations to the cases of rotating disks and spheres. The resulting transformations for a rotating disk are utilized to derive predictions of the radial distributions of matter and dark matter densities in rotationally supported galaxies based solely on their observed rotation curves. It is also shown that for galaxies with flattening curves, good approximations of the radial distributions of matter and dark matter and of the dark matter fraction could be obtained from one measurable scale radius. Test of the model on five galaxies, chosen randomly from the SPARC database, yielded impressive predictions. The rotation curves of all the investigated galaxies emerged as accurate traces of the predicted radial density distributions of their dark matter. This striking result raises an intriguing physical explanation of gravity in galaxies, according to which it is the proximal drag of the stars and gas in the galaxy by its rotating dark matter web. We conclude by alluding briefly to the application of the proposed model to stellar systems and black holes. This study also hints at the potential of the discovered matter-dark matter duality in fixing the standard model of elementary particles in a natural manner without the need for hypothesizing about supersymmetric particles.

Keywords: dark matter, galaxies rotation curves, SPARC, rotating disk

Procedia PDF Downloads 63
730 Murine Pulmonary Responses after Sub-Chronic Exposure to Environmental Ultrafine Particles

Authors: Yara Saleh, Sebastien Antherieu, Romain Dusautoir, Jules Sotty, Laurent Alleman, Ludivine Canivet, Esperanza Perdrix, Pierre Dubot, Anne Platel, Fabrice Nesslany, Guillaume Garcon, Jean-Marc Lo-Guidice

Abstract:

Air pollution is one of the leading causes of premature death worldwide. Among air pollutants, particulate matter (PM) is a major health risk factor, through the induction of cardiopulmonary diseases and lung cancers. They are composed of coarse, fine and ultrafine particles (PM10, PM2.5, and PM0.1 respectively). Ultrafine particles are emerging unregulated pollutants that might have greater toxicity than larger particles, since they are more abundant and consequently have higher surface area per unit of mass. Our project aims to develop a relevant in vivo model of sub-chronic exposure to atmospheric particles in order to elucidate the specific respiratory impact of ultrafine particles compared to fine particulate matter. Quasi-ultrafine (PM0.18) and fine (PM2.5) particles have been collected in the urban industrial zone of Dunkirk in north France during a 7-month campaign, and submitted to physico-chemical characterization. BALB/c mice were then exposed intranasally to 10µg of PM0.18 or PM2.5 3 times a week. After 1 or 3-month exposure, broncho alveolar lavages (BAL) were performed and lung tissues were harvested for histological and transcriptomic analyses. The physico-chemical study of the collected particles shows that there is no major difference in elemental and surface chemical composition between PM0.18 and PM2.5. Furthermore, the results of the cytological analyses carried out show that both types of particulate fractions can be internalized in lung cells. However, the cell count in BAL and preliminary transcriptomic data suggest that PM0.18 could be more reactive and induce a stronger lung inflammation in exposed mice than PM2.5. Complementary studies are in progress to confirm these first data and to identify the metabolic pathways more specifically associated with the toxicity of ultrafine particles.

Keywords: environmental pollution, lung affect, mice, ultrafine particles

Procedia PDF Downloads 224
729 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions

Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding

Abstract:

By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.

Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals

Procedia PDF Downloads 197
728 Revealing the Risks of Obstructive Sleep Apnea

Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo

Abstract:

Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.

Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure

Procedia PDF Downloads 294
727 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 217
726 Attitude of the Adult Population of Lithuania Towards Added Sugar and Sweeteners in Food

Authors: Rokas Arlauskas, Donatas Austys, Rimantas Stukas

Abstract:

Background. The World Health Organization recommends to reduce an intake of added sugar. High consumption of sugar and sweets increases the risk of obesity and overweight. The analysis of the body mass index (BMI) data of the adult population of Lithuania shows that only less than half (45.7%) of the total population has a normal body weight (18.5-24.9 BMI), overweight (25.0-29, 9 BMI) more than a third (36.6 percent), obese (>=30.0 BMI) is 15.4 percent population and underweight (<18.5 BMI) has 2.1 percent population. More men than women are obese (16.5% and 14.9%, respectively). In order to achieve this, alternative sweetening methods by using sweeteners might be employed. However, studies show that attitudes and beliefs might act as a barrier for sugar replacement with sweeteners. In Lithuania, there is a lack of studies on consumption of sugar and sweeteners, including attitudes of Lithuanian residents towards them. Therefore the objective of this study was to assess the attitude of Lithuanian adults towards replacement of added sugar with sweeteners. Methods. A representative sample of Lithuanian population of adults aged 18 to 75 years was formed. A total number of 1008 residents participated. Data was collected using a questionnaire. With respect to social and demografic characteristics, distribution of respondents by answering to one question was analysed. Respondents were asked to indicate their likely behaviour in terms of added sugar if they knew that there a healthier than sugar sweetener exists.Results. Every fifth participant (20.7%) indicated no added sugar consumption and no likely use of the healthier sweetener. Every second respondent among added sugar consumers (40.0% of whole sample) indicated that if they knew about existence of a healthier sweetener than sugar, they would try it and, if liked it, would use it instead of sugar. Approximately 35.0% of whole sample would ignore the fact that healthier than sugar sweetener exists and continue to consume sugar regardless of its effects on health. Younger, urban and higher educated respondents were more likely to opt for a healthier sweetener instead of added sugar (respectively, 45.7% vs. 34.4%, 43.3% vs. 31.2%, 47.6% vs. 37.3% of whole sample, p < 0.05). Conclusions. Half of Lithuanian adult consumers of added sugar would try to replace added sugar with healthier sweetener. Such a reasonable attitude was more prevalent among younger, urban and higher educated respondents.

Keywords: added sugar, lithuanian adult population, sweeteners., food

Procedia PDF Downloads 56
725 Augmented Reality Enhanced Order Picking: The Potential for Gamification

Authors: Stavros T. Ponis, George D. Plakas-Koumadorakis, Sotiris P. Gayialis

Abstract:

Augmented Reality (AR) can be defined as a technology, which takes the capabilities of computer-generated display, sound, text and effects to enhance the user's real-world experience by overlaying virtual objects into the real world. By doing that, AR is capable of providing a vast array of work support tools, which can significantly increase employee productivity, enhance existing job training programs by making them more realistic and in some cases introduce completely new forms of work and task executions. One of the most promising AR industrial applications, as literature shows, is the use of Head Worn, monocular or binocular Displays (HWD) to support logistics and production operations, such as order picking, part assembly and maintenance. This paper presents the initial results of an ongoing research project for the introduction of a dedicated AR-HWD solution to the picking process of a Distribution Center (DC) in Greece operated by a large Telecommunication Service Provider (TSP). In that context, the proposed research aims to determine whether gamification elements should be integrated in the functional requirements of the AR solution, such as providing points for reaching objectives and creating leaderboards and awards (e.g. badges) for general achievements. Up to now, there is a an ambiguity on the impact of gamification in logistics operations since gamification literature mostly focuses on non-industrial organizational contexts such as education and customer/citizen facing applications, such as tourism and health. To the contrary, the gamification efforts described in this study focus in one of the most labor- intensive and workflow dependent logistics processes, i.e. Customer Order Picking (COP). Although introducing AR in COP, undoubtedly, creates significant opportunities for workload reduction and increased process performance the added value of gamification is far from certain. This paper aims to provide insights on the suitability and usefulness of AR-enhanced gamification in the hard and very demanding environment of a logistics center. In doing so, it will utilize a review of the current state-of-the art regarding gamification of production and logistics processes coupled with the results of questionnaire guided interviews with industry experts, i.e. logisticians, warehouse workers (pickers) and AR software developers. The findings of the proposed research aim to contribute towards a better understanding of AR-enhanced gamification, the organizational change it entails and the consequences it potentially has for all implicated entities in the often highly standardized and structured work required in the logistics setting. The interpretation of these findings will support the decision of logisticians regarding the introduction of gamification in their logistics processes by providing them useful insights and guidelines originating from a real life case study of a large DC operating more than 300 retail outlets in Greece.

Keywords: augmented reality, technology acceptance, warehouse management, vision picking, new forms of work, gamification

Procedia PDF Downloads 137
724 Long-Term Effect of Dialysis Therapy for Osteoporosis and Extra-Osseous Calcification in Chronic Renal Failure

Authors: Itsuo Yokoyama, Rikako Kikuti, Naoko Watabe, Tosinori Asai, Sarai Tsuyoshi

Abstract:

Introduction: Chronic kidney disease presents significant changes in mineral and bone metabolism, referred to as CKD-MBD. These changes lead to decreased bone mass, heightened bone fragility, fractures, and increased vascular and valvular calcification, ultimately impacting cardiovascular outcomes. Key contributors to these complications in dialysis patients include calcium, phosphate, parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and the vitamin D hormonal system. Methods: In our outpatient dialysis clinic, we monitor the long-term effects of vascular calcifications by calculating the volume of calcified areas in the abdominal aorta based on CT scan data. The results revealed a progressive nature of vascular calcification. To extend our study, we measured the volume of calcification in bones (vertebrae and femur) corresponding to Hounsfield units of 200 and 300. The study aims to investigate changes in osteoporosis during a 5-year follow-up period and its relationship with extraosseous calcification. Results and Considerations: While extraosseous calcification demonstrated a generally progressive nature, often resistant to medical treatment, the degree of osteoporotic change varied among patients. The majority exhibited continuous osteoporotic changes, while some showed improvement or minimal changes in bone calcification. Variations in the distribution and magnitude of osteoporotic changes were observed between groups based on the timing of hemodialysis initiation during the study. The former group tended to display more osteoporotic changes, possibly attributed to differences in medication between the groups. Other contributing factors may include the patient's age, duration of dialysis, or causes of renal disease. In conclusion, we emphasize the importance of carefully monitoring calcium and phosphate levels and maintaining adequate dialysis therapy to prevent osteoporosis in dialysis patients.

Keywords: CKD-MBD, dialysis, calcification, kidney

Procedia PDF Downloads 32
723 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 176
722 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 126
721 Prevalence of Risk Factors of the Female Athlete Triad Among Young Elite Athletes of the World

Authors: Muhammad Saleem

Abstract:

Background: Inattentive food choices and engagement in excessive physical activities by male athletes can potentially lead to adverse health consequences. Objective: The aim was to ascertain the occurrence of risk factors associated with the Male Athlete Triad among young elite athletes in Pakistan. Methodology: In 2018, a cross-sectional study based on questionnaires was conducted at the Pakistan Sports Board. The study aimed to explore the risk factors related to the Male Athlete Triad in young elite athletes who were part of national training camps in major metropolitan areas. The study included proficient male elite athletes aged 18 to 25 years, capable of understanding the English questionnaire. The athletes completed a survey encompassing aspects like demographic information, educational background, Body Mass Index (BMI), sports involvement, and hours of participation. Additionally, they filled out the Eating Attitude Test-26 (EAT-26) and questionnaires assessing risks of amenorrhea and low bone mineral density. The prevalence of risk factors for each of the three components was individually evaluated. The collected data underwent analysis using SPSS-20, with descriptive statistics being applied. Results: The study comprised a sample of 90 elite athletes (mean age: 23.57 ± 2.37 years, mean BMI: 21.97 ± 1.90) engaged in various sports. The EAT-26 results indicated that 50% of athletes were at risk of developing an eating disorder. Moreover, 83.3% exhibited disordered eating behaviors that necessitated referral. Risks for amenorrhea were observed in 15% of the participants, and regarding low bone mineral density, notable risks were absent except for the consumption of caffeinated beverages, which was noted in 51.7% of participants. Conclusion: The study identified a significant prevalence of disordered eating risk among male elite athletes in Pakistan. However, the risks associated with amenorrhea and low bone mineral density were not a major concern in this particular group.

Keywords: Pakistan, osteoporosis, female athlete triad, bone mineral density, athlete, amenorrhea, eating disorders

Procedia PDF Downloads 46
720 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 62
719 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation

Authors: Akhil Teja Kambhampati, Mark A. Hoffman

Abstract:

In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.

Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols

Procedia PDF Downloads 19
718 Promising Anti-Displacement Practices for High Cost Cities

Authors: Leslie M. Mullins

Abstract:

In the face of dramatically shifting demographic trends and macroeconomic pressures on affordable housing in high-cost cities, municipalities and developers have been forced to develop new models of sustainable development that integrates elements of substantial rehabilitation and new construction while controlling for relocation and mass displacement. Community development partners in the San Francisco Bay Area of Northern California are starting to prioritize anti-displacement strategies when rehabilitating severely neglected public housing developments. This study explored the community-driven efforts to transform four dilapidated public housing sites (N=2,600 households) into thriving mixed-income housing communities. Eight interviews were conducted with frontline workers (property managers and service providers), who directly worked with residents throughout critical stages of the relocation and leasing process. Interviews were audio-recorded, transcribed, and analyzed by a systematic procedure for qualitative analysis to identify key themes on the topics of interest. Also, an extensive literature analysis was conducted to determine promising practices throughout the industry. This study highlighted that resident’s emotional attachment to their homes (regardless of the deteriorating conditions of their unit) could both a) impede the relocation process and substantially impact the budget and timeline, while b) simultaneously providing a basis for an enhanced sense of belonging and community cohesion. This phenomenon often includes the welcoming of new residents and cultures. Resident centered workshops, healing centered rituals, and extensive 'hands-on' guidance was highlighted as promising practices that resulted in residential retention rates that were two to three times the national average and positively impacted the overall project’s budget and timeline.

Keywords: anti-displacement strategies, community based practices, community cohesion, cultural preservation, healing-centered, public housing, relocation, trauma-informed

Procedia PDF Downloads 114
717 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake

Authors: Supriya Majumder, Pabitra Banik

Abstract:

Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.

Keywords: arsenic, fractionation, paddy soil, potential availability

Procedia PDF Downloads 112
716 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India

Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena

Abstract:

India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.

Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market

Procedia PDF Downloads 24
715 TLR4 Gene Polymorphism and Biochemical Markers as a Tool to Identify Risk of Osteoporosis in Women from Karachi

Authors: Rozeena Baig, R. Rehana Rehman, Rifat Ahmed

Abstract:

Background: Osteoporosis, characterized by low bone mineral density, poses a global health concern. Diagnosis increases the likelihood of developing osteoporosis, a multifactorial disorder marked by low bone mass, elevating the risk of fractures in the lumbar spine, femoral neck, hip, vertebras, and distal forearm, particularly in postmenopausal women due to bone loss influenced by various pathophysiological factors. Objectives: The aim is to investigate the association of serum cytokine, bone turnover marker, bone mineral density and TLR4 gene polymorphism in pre and post-menopausal women and to find if any of these can be the potential predictor of osteoporosis in postmenopausal women. Material and methods: The study participants consisted of Group A (n=91) healthy pre-menopausal women and Group B (n=102) healthy postmenopausal women having ≥ 5 years’ history of menopause. ELISA was performed for cytokine (TNFα) and bone turnover markers (carboxytelopeptides), respectively. Bone Mineral Density (BMD)was measured through a dual X-ray absorptiometry (DEXA) scan. Toll-like Receptors 4 (TLR4) gene polymorphisms (A896G; Asp299Gly) and (C1196T; Thr399Ile) were investigated by PCR and Sanger sequencing. Results: Statistical analysis reveals a positive correlation of age and BMI with T scores in the premenopausal group, whereas in post-menopausal group found a significant negative correlation between age and T-score at hip (r = - 0.352**), spine (r = - .306**), and femoral neck (r = - 0.344**) and a significant negative correlation of BMI with TNF-α (- 0.316**). No association and significant differences were observed for TLR4 genotype and allele frequencies among studied groups However, both SNPs exhibited significant association with each other. Conclusions: This study concludes that BMI, BMD and TNF-α are the potential predictors of osteoporosis in post-menopausal women. However, CTX and TLR4 gene polymorphism did not appear as potential predictors of bone loss in this study and apparently cannot help in predicting bone loss in post-menopausal women.

Keywords: osteoporosis, post-menopausal, pre-menopausal woemn, genetics mutaiont, TLR4 genepolymorphsum

Procedia PDF Downloads 24
714 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 368
713 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories

Authors: Haj Najafi Leila, Tehranizadeh Mohsen

Abstract:

Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.

Keywords: dependency, story-cost, cost modes, engineering demand parameter

Procedia PDF Downloads 162
712 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies

Authors: Samuel Quick

Abstract:

The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.

Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology

Procedia PDF Downloads 165
711 Experimental Investigation on the Role of Thermoacoustics on Soot Formation

Authors: Sambit Supriya Dash, Rahul Ravi R, Vikram Ramanan, Vinayak Malhotra

Abstract:

Combustion in itself is a complex phenomenon that involves the interaction and interplay of multiple phenomena, the combined effect of which gives rise to the common flame that we see and use in our daily life applications from cooking to propelling our vehicles to space. The most important thing that goes unnoticed about these flames is the effect of the various phenomena from its surrounding environment that affects its behavior and properties. These phenomena cause a variety of energy interactions that lead to various types of energy transformations which in turn affect the flame behavior. This paper focuses on experimentally investigating the effect of one such phenomenon, which is the acoustics or sound energy on diffusion flames. The subject in itself is extensively studied upon as thermo-acoustics globally, whereas the current work focuses on studying its effect on soot formation on diffusion flames. The said effect is studied in this research work by the use of a butane as fuel, fitted with a nozzle that houses 3 arrays consisting of 4 holes each that are placed equidistant to each other and the resulting flame impinged with sound from two independent and similar sound sources that are placed equidistant from the centre of the flame. The entire process is systematically video graphed using a 60 fps regular CCD and analysed for variation in flame heights and flickering frequencies where the fuel mass flow rate is maintained constant and the configuration of entrainment holes and frequency of sound are varied, whilst maintaining constant ambient atmospheric conditions. The current work establishes significant outcomes on the effect of acoustics on soot formation; it is noteworthy that soot formation is the main cause of pollution and a major cause of inefficiency of current propulsion systems. This work is one of its kinds, and its outcomes are widely applicable to commercial and domestic appliances that utilize combustion for energy generation or propulsion and help us understand them better, so that we can increase their efficiency and decrease pollution.

Keywords: thermoacoustics, entrainment, propulsion system, efficiency, pollution

Procedia PDF Downloads 149
710 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 21
709 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach

Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva

Abstract:

The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.

Keywords: analog ensemble, electricity market, PV forecast, solar energy

Procedia PDF Downloads 137
708 Working Without a Safety Net: Exploring Struggles and Dilemmas Faced by Greek Orthodox Married Clergy Through a Mental Health Lens, in the Australian Context

Authors: Catherine Constantinidis (Nee Tsacalos)

Abstract:

This paper presents one aspect of the larger Masters qualitative study exploring the roles of married Greek Orthodox clergy, the Priest and Presbytera, under the wing of the Greek Orthodox Archdiocese of Australia. This ground breaking research necessitated the creation of primary data within a phenomenological paradigm drawing from lived experiences of the Priests and Presbyteres in contemporary society. As a Social Worker, a bilingual (Greek/English) Mental Health practitioner and a Presbytera, the questions constantly raised and pondered are: Who do the Priest and Presbytera turn to when they experience difficulties or problems? Where do they go for support? What is in place for their emotional and psychological health and well-being? Who cares for the spiritual carer? Who is there to catch our falling clergy and their wives? What is their 'safety net'? Identified phenomena of angst, stress, frustration and confusion experienced by the Priest and (by extension) the Presbytera, within their position, coupled with basic assumptions, perceptions and expectations about their roles, the role of the organisation (the Church), and their role as spouse often caused confusion and in some cases conflict. Unpacking this complex and multi-dimensional relationship highlighted not only the roller coaster of emotions, potentially affecting their physical and mental health, but also the impact on the interwoven relationships of marriage and ministry. The author considers these phenomena in the light of bilingual cultural and religious organisational practice frameworks, specifically the Greek Orthodox Church, whilst filtering these findings through a mental health lens. One could argue that it is an expectation that clergy (and by default their wives) take on the responsibility to be kind, nurturing and supportive to others. However, when it comes to taking care of self, they are not nearly as kind. This research looks at a recurrent theme throughout the interviews where all participants talked about limited support systems and poor self care strategies and the impact this has on their ministry, mental, emotional, and physical health and ultimately on their relationships with self and others. The struggle all participants encountered at some point in their ministry was physical, spiritual and psychological burn out. The overall aim of the researcher is to provide a voice for the Priest and the Presbytera painting a clearer picture of these roles and facilitating an awareness of struggles and dilemmas faced in their ministry. It is hoped these identified gaps in self care strategies and support systems will provide solid foundations for building a culturally sensitive, empathetic and effective support system framework, incorporating the spiritual and psychological well-being of the Priest and Presbytera, a ‘safety net’. A supplementary aim is to inform and guide ministry practice frameworks for clergy, spouses, the church hierarchy and religious organisations on a local and global platform incorporating some sort of self-care system.

Keywords: care for the carer, mental health, Priest, Presbytera, religion, support system

Procedia PDF Downloads 380