Search results for: data reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28981

Search results for: data reduction

24901 A Comparation Analysis of Islamic Bank Efficiency in the United Kingdom and Indonesia during Eurozone Crisis Using Data Envelopment Analysis

Authors: Nisful Laila, Fatin Fadhilah Hasib, Puji Sucia Sukmaningrum, Achsania Hendratmi

Abstract:

The purpose of this study is to determine and comparing the level of efficiency of Islamic Banks in Indonesia and United Kingdom during eurozone sovereign debt crisis. This study using a quantitative non-parametric approach with Data Envelopment Analysis (DEA) VRS assumption, and a statistical tool Mann-Whitney U-Test. The samples are 11 Islamic Banks in Indonesia and 4 Islamic Banks in England. This research used mediating approach. Input variable consists of total deposit, asset, and the cost of labour. Output variable consists of financing and profit/loss. This study shows that the efficiency of Islamic Bank in Indonesia and United Kingdom are varied and fluctuated during the observation period. There is no significant different the efficiency performance of Islamic Banks in Indonesia and United Kingdom.

Keywords: data envelopment analysis, efficiency, eurozone crisis, islamic bank

Procedia PDF Downloads 329
24900 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective

Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada

Abstract:

The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.

Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond

Procedia PDF Downloads 292
24899 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys

Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa

Abstract:

The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.

Keywords: thermal comfort, energy consumption, energy standards, comfort models

Procedia PDF Downloads 325
24898 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data

Authors: Chi-Lun Liu

Abstract:

Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.

Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering

Procedia PDF Downloads 246
24897 Investigating Self-Confidence Influence on English as a Foreign Language Student English Language Proficiency Level

Authors: Ali A. Alshahrani

Abstract:

This study aims to identify Saudi English as a Foreign Language (EFL) students' perspectives towards using the English language in their studies. The study explores students' self-confident and its association with students' actual performance in English courses in their different academic programs. A multimodal methodology was used to fulfill the research purpose and answer the research questions. A 25-item survey questionnaire and final examination grades were used to collect data. Two hundred forty-one students agreed to participate in the study. They completed the questionnaire and agreed to release their final grades to be a part of the collected data. The data were coded and analyzed by SPSS software. The findings indicated a significant difference in students' performance in English courses between participants' academic programs on the one hand. Students' self-confidence in their English language skills, on the other hand, was not significantly different between participants' academic programs. Data analysis also revealed no correlational relationship between students' self-confidence level and their language skills and their performance. The study raises more questions about other vital factors such as course instructors' views of the materials, faculty members of the target department, family belief in the usefulness of the program, potential employers. These views and beliefs shape the student's preparation process and, therefore, should be explored further.

Keywords: English language intensive program, language proficiency, performance, self-confidence

Procedia PDF Downloads 140
24896 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis

Authors: Iveta Řepková

Abstract:

The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.

Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis

Procedia PDF Downloads 363
24895 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: semantic links, data mining, linked data, SKOS

Procedia PDF Downloads 184
24894 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading

Authors: C. Shalini Devi

Abstract:

This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.

Keywords: composite, stress concentration, finite element analysis, tensile strength

Procedia PDF Downloads 451
24893 The Adoption of Sustainable Textiles & Smart Apparel Technology for the South African Healthcare Sector

Authors: Winiswa Mavutha

Abstract:

The adoption of sustainable textiles and smart apparel technology is crucial for the South African healthcare sector. It’s all about finding innovative solutions to track patient health and improve overall healthcare delivery. This research focuses on how sustainable textile fibers can be integrated with smart apparel technologies by utilizing embedded sensors and some serious data analytics—to enable real-time monitoring of patients. Smart apparel technology conducts constant monitoring of patients’ heart rate, temperature, and blood pressure, including delivering medication electronically, which enhances patient care and reduces hospital readmissions. Currently, the South African healthcare system has its own set of challenges, such as limited resources and a heavy disease burden. Apparel and textile manufacturers in South Africa can address these challenges while promoting environmental sustainability through waste reduction and decreased reliance on harmful chemicals that are typically utilized in traditional textile manufacturing. The study will emphasize the importance of sustainable practices in the textile supply chain. Additionally, this study will examine the importance of collaborative initiatives among stakeholders—such as government entities healthcare providers, including textile and apparel manufacturers, which promotes an environment that fosters innovation in sustainable smart textiles and apparel technology. If South Africa taps into its local resources and skills, it could be a pioneer in the global South for creating eco-friendly healthcare solutions. This aligns perfectly with global sustainability trends and sustainable development goals. The study will use a mixed-method approach by conducting surveys, focus group interviews, and case studies with healthcare professionals, patients, as well as textile and apparel manufacturers. The utilization of sustainable smart textiles doesn’t only enhance patient care through better monitoring, but it also supports a circular economy with biodegradable fibers and minimal textile waste. There’s a growing acknowledgment in the global healthcare sector about the benefits of smart textiles for personalized medicine, and South Africa has the chance to use this advancement to enhance its healthcare services while also addressing some persistent environmental challenges.

Keywords: smart apparel technologies, sustainable textiles, south African healthcare innovation, technology acceptance model

Procedia PDF Downloads 19
24892 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.

Keywords: e-commerce, online retail, Retail business, trust, website

Procedia PDF Downloads 201
24891 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 165
24890 Principal Components Analysis of the Causes of High Blood Pressure at Komfo Anokye Teaching Hospital, Ghana

Authors: Joseph K. A. Johnson

Abstract:

Hypertension affects 20 percent of the people within the ages 55 upward in Ghana. Of these, almost one-third are unaware of their condition. Also at the age of 55, more men turned to have hypertension than women. After that age, the condition becomes more prevalent with women. Hypertension is significantly more common in African Americans of both sexes than the racial or ethnic groups. This study was conducted to determine the causes of high blood pressure in Ashanti Region, Ghana. The study employed One Hundred and Seventy (170) respondents. The sample population for the study was all the available respondents at the time of the data collection. The research was conducted using primary data where convenience sampling was used to locate the respondents. A set of questionnaire were used to gather the data for the study. The gathered data was analysed using principal component analysis. The study revealed that, personal description, lifestyle behavior and risk awareness as some of the causes of high blood pressure in Ashanti Region. The study therefore recommend that people must be advice to see to their personal characteristics that may contribute to high blood pressure such as controlling of their temper and how to react perfectly to stressful situations. They must be educated on the factors that may increase the level of their blood pressure such as the essence of seeing a medical doctor before taking in any drug. People must also be made known by the public health officers to those lifestyles behaviour such as smoking and drinking of alcohol which are major contributors of high blood pressure.

Keywords: high blood pressure, principal component analysis, hypertension, public health

Procedia PDF Downloads 488
24889 Opportunities and Challenges to Local Legislation at the Height of the COVID-19 Pandemic: Evidence from a Fifth Class Municipality in the Visayas, Philippines

Authors: Renz Paolo B. Ramos, Jake S. Espina

Abstract:

The Local Government Academy of the Philippines explains that Local legislation is both a power and a process by which it enacts ordinances and resolutions that have the force and effect of law while engaging with a range of stakeholders for their implementation. Legislative effectiveness is crucial for the development of any given area. This study's objective is to evaluate the legislative performance of the 10th Sangguniang of Kawayan, a legislative body in a fifth-class municipality in the Province of Biliran, during the height of the COVID-19 pandemic (2019-2021) with a focus on legislation, accountability, and participation, institution-building, and intergovernmental relations. The aim of the study was that a mixed-methods strategy was used to gather data. The Local Legislative Performance Appraisal Form (LLPAF) was completed, while Focus Interviews for Local Government Unit (LGU) personnel, a survey questionnaire for constituents, and ethnographic diary-writing were conducted. Convenience Sampling was utilized for LGU workers, whereas Simple Random Sampling was used to identify the number of constituents participating. Interviews were analyzed using thematic analysis, while frequency data analysis was employed to describe and evaluate the nature and connection of the data to the underlying population. From this data, the researchers draw opportunities and challenges met by the local legislature during the height of the pandemic.

Keywords: local legislation, local governance, legislative effectiveness, legislative analysis

Procedia PDF Downloads 78
24888 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 271
24887 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture

Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger

Abstract:

3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.

Keywords: 3D woven composites, compression, preforms, textile composites

Procedia PDF Downloads 141
24886 Evaluating Effectiveness of Training and Development Corporate Programs: The Russian Agribusiness Context

Authors: Ekaterina Tikhonova

Abstract:

This research is aimed to evaluate the effectiveness of T&D (Training and Development) on the example of two T&D programs for the Executive TOP Management run in 2012, 2015-2016 in Komos Group. This study is commissioned to research the effectiveness of two similar corporate T&D programs (within one company) in two periods of time (2012, 2015-2016) through evaluating the programs’ effectiveness using the four-level Kirkpatrick’s model of evaluating T&D programs and calculating ROI as an instrument for T&D program measuring by Phillips’ formula. The research investigates the correlation of two figures: the ROI calculated and the rating percentage scale per the ROI implementation (Wagle’s scale). The study includes an assessment of feedback 360 (Kirkpatrick's model) and Phillips’ ROI Methodology that provides a step-by-step process for collecting data, summarizing and processing the collected information. The data is collected from the company accounting data, the HR budgets, MCFO and the company annual reports for the research periods. All analyzed data and reports are organized and presented in forms of tables, charts, and graphs. The paper also gives a brief description of some constrains of the research considered. After ROI calculation, the study reveals that ROI ranges between the average implementation (65% to 75%) by Wagle’s scale that can be considered as a positive outcome. The paper also gives some recommendations how to use ROI in practice and describes main benefits of ROI implementation.

Keywords: ROI, organizational performance, efficacy of T&D program, employee performance

Procedia PDF Downloads 255
24885 Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging

Authors: Lukáš Klein, Karel Žídek

Abstract:

Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio.

Keywords: compressive imaging, hyperspectral imaging, near-infrared spectrum, single-pixel camera, visible spectrum

Procedia PDF Downloads 91
24884 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Chaudhuri Manoj Kumar Swain, Susmita Das

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis

Procedia PDF Downloads 183
24883 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 153
24882 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 148
24881 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm

Procedia PDF Downloads 416
24880 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 380
24879 Waste Scavenging as a Waste-to-Wealth Strategy for Waste Reduction in Port Harcourt City Nigeria: A Mixed Method Study

Authors: Osungwu Emeka

Abstract:

Until recently, Port Harcourt was known as the “Garden City of Nigeria” because of its neatness and the overwhelming presence of vegetation all over the metropolis. But today, the presence of piles of refuse dotting the entire city may have turned Port Harcourt into a “Garbage City”. Indiscriminate dumping of industrial, commercial and household wastes such as food waste, paper, polythene, textiles, scrap metals, glasses, wood, plastic, etc. at street corners and gutters, is still very common. The waste management problem in the state affects the citizens both directly and indirectly. The dumping of waste along the roadside obstructs traffic and, after mixing with rain water may sip underground with the possibility of the leachate contaminating the groundwater. The basic solid waste management processes of collection, transportation, segregation and final disposal appear to be very inefficient. This study was undertaken to assess waste utilization using metal waste scavengers. Highlighting their activities as a part of the informal sector of the solid waste management system with a view to identifying their challenges, prospects and possible contributions to the solid waste management system in the Port Harcourt metropolis. Therefore, the aim was to understand and assess scavenging as a system of solid waste management in Port Harcourt and to identify the main bottlenecks to its efficiency and the way forward. This study targeted people who engage in scavenging metal scraps across 5 major waste dump sites across Port Harcourt. To achieve this, a mixed method study was conducted to provide both experiential evidence on this waste utilization method using a qualitative study and a survey to collect numeric evidence on this subject. The findings from the qualitative string of this study provided insight on scavenging as a waste utilization activity and how their activities can reduce the gross waste generated and collected from the subject areas. It further showed the nature and characteristics of scavengers in the waste recycling system as a means of achieving the millennium development goals towards poverty alleviation, job creation and the development of a sustainable, cleaner environment. The study showed that in Port Harcourt, the waste management practice involves the collection, transportation and disposal of waste by refuse contractors using cart pushers and disposal vehicles at designated dumpsites where the scavengers salvage metal scraps for recycling and reuse. This study further indicates that there is a great demand for metal waste materials/products that are clearly identified as genuinely sustainable, even though they may be perceived as waste. The market for these waste materials shall promote entrepreneurship as a profitable venture for waste recovery and recycling in Port Harcourt. Therefore, the benefit of resource recovery and recycling as a means of the solid waste management system will enhance waste to wealth that will reduce pollution, create job opportunities thereby alleviate poverty.

Keywords: scavengers, metal waste, waste-to-wealth, recycle, Port Harcourt, Nigeria, waste reduction, garden city, waste

Procedia PDF Downloads 104
24878 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects

Authors: Brian Romansky

Abstract:

There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.

Keywords: automation, BIM, robot, ROI.

Procedia PDF Downloads 93
24877 Analysis of Bored Piles with and without Geogrid in a Selected Area in Kocaeli/Turkey

Authors: Utkan Mutman, Cihan Dirlik

Abstract:

Kocaeli/TURKEY district in which wastewater held in a chosen field increased property has made piling in order to improve the ground under the aeration basin. In this study, the degree of improvement the ground after bored piling held in the field were investigated. In this context, improving the ground before and after the investigation was carried out and that the solution values obtained by the finite element method analysis using Plaxis program have been made. The diffuses in the aeration basin whose treatment is to aide is influenced with and without geogrid on the ground. On the ground been improved, for the purpose of control of manufactured bored piles, pile continuity, and pile load tests were made. Taking into consideration both the data in the field as well as dynamic loads in the aeration basic, an analysis was made on Plaxis program and compared the data obtained from the analysis result and data obtained in the field.

Keywords: geogrid, bored pile, soil improvement, plaxis

Procedia PDF Downloads 270
24876 Assessing the Lifestyle Factors, Nutritional and Socioeconomic Status Associated with Peptic Ulcer Disease: A Cross-Sectional Study among Patients at the Tema General Hospital of Ghana

Authors: Marina Aferiba Tandoh, Elsie Odei

Abstract:

Peptic Ulcer Disease (PUD) is amongst the commonest gastrointestinal problems that require emergency treatment in order to preserve life. The prevalence of PUD is increasing within the Ghanaian population, deepening the need to identify factors that are associated with its occurrence. This cross-sectional study assessed the nutritional status, socioeconomic and lifestyle factors associated with PUD among patients attending the Out-Patient Department of the Tema General Hospital of Ghana. A food frequency questionnaire and a three-day, 24-hour recall were used to assess the dietary intakes of study participants. A standardized questionnaire was used to obtain information on the participants’ socio-demographic characteristics, lifestyle as well as medical history. The data was analyzed using SPSS version 22. The mean age of study participants was 32.8±15.41years. Females were significantly higher (61.4%) than males (38.6%) (p < 0.001). All participants had received some form of education, with tertiary education being the highest (52.6%). The majority of them managed their condition with medications only (86%), while 10.5% managed it with a combination of medications and diet. The rest were either by dietary counseling only (1.8%), or surgery only (1.8%). or herbal medicines (29.3%), which were made from home (7.2%) or bought from a medical store (10.8%). Most of the participants experienced a recurrence of the disease (42.1%). For those who had ever experienced recurrences of the disease, it happened when they ate acidic foods (1.8%), ate bigger portions (1.8%), starved themselves (1.8%), or were stressed (1.8%). Others also had triggers when they took certain medications (1.8%) or ate too much pepper (1.8%). About 49% of the participants were either overweight or obese with a recurrence of PUD (p>0.05). Obese patients had the highest rate of PUD recurrences (41%). Drinking alcohol was significantly associated with the recurrence of PUD (χ2= 5.243, p=0.026). Other lifestyles, such as weed smoking, fasting, and use of herbal medicine and NSAIDs did not have any significant association with the disease recurrence. There was no significant correlation between the various dietary patterns and anthropometric parameters except dietary pattern one (salty snacks, regular soft drinks, milk, sweetened yogurt, ice cream, and cooked vegetables), which had a positive correlation with weight (p=0.002) and BMI (p=0.038). PUD patients should target weight reduction actions and reduce alcohol intake as measures to control the recurrence of the disease. Nutrition Education among this population must be promoted to minimize the recurrence of PUD.

Keywords: Dietary patterns, lifestyle factors, nutritional status, peptic ulcer disease

Procedia PDF Downloads 88
24875 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 129
24874 Studying the Schema of Afghan Immigrants about Iranians; A Case Study of Immigrants in Tehran Province

Authors: Mohammad Ayobi

Abstract:

Afghans have been immigrating to Iran for many years; The re-establishment of the Taliban in Afghanistan caused a flood of Afghan immigrants to Iran. One of the important issues related to the arrival of Afghan immigrants is the view that Afghan immigrants have toward Iranians. In this research, we seek to identify the schema of Afghan immigrants living in Iran about Iranians. A schema is a set of data or generalized knowledge that is formed in connection with a particular group or a particular person, or even a particular nationality to identify a person with pre-determined judgments about certain matters. The schemata between certain nationalities have a direct impact on the formation of interactions between them and can be effective in establishing or not establishing proper communication between the Afghan immigrant nationality and Iranians. For the scientific understanding of research, we use the theory of “schemata.” The method of this study is qualitative, and its data will be collected through semi-structured deep interviews, and data will be analyzed by thematic analysis. The expected findings in this study are that the schemata of Afghan immigrants are more negative than Iranians because Iranians are self-centered and fanatical about Afghans, and Afghans are only workers to them.

Keywords: schema study, Afghan immigrants, Iranians, in-depth interview

Procedia PDF Downloads 90
24873 The Effects of Modern Materials on the Moisture Resistance Performance of Architectural Buildings

Authors: Leyli Hashemi Rafsanjani, Hoda Mortazavi Alavi, Amirhossein Habibzadeh

Abstract:

At present, the atmospheric and environmental factors impose massive damages to buildings. Thus, to reduce these damages, researchers pay more attention on qualitative and quantitative characteristic of buildings materials. Condensation is one of the problems in Contemporary Sustecture Design. It could cause serious damages to the frontage, interior and structural elements of buildings. As a result, taking preventative steps to avoid condensation from occurring in buildings will help prevent avoidable and costly problems in the future. Hence, the aim of this paper is to answer the question: “Does the use of advanced materials cause the reduction of condensation formed on the walls?" In response to those flaws, this paper considered similar articles and selected 20 buildings randomly from contemporary architecture of developing countries which have been built in recent decade from 2002 to 2012, to find out the mutual relation between the usage of advanced materials and level of condensation damages. This consideration shows that by using advanced materials, we will have fewer damages.

Keywords: condensation, advanced materials, contemporary sustecture, moisture

Procedia PDF Downloads 331
24872 Shocks and Flows - Employing a Difference-In-Difference Setup to Assess How Conflicts and Other Grievances Affect the Gender and Age Composition of Refugee Flows towards Europe

Authors: Christian Bruss, Simona Gamba, Davide Azzolini, Federico Podestà

Abstract:

In this paper, the authors assess the impact of different political and environmental shocks on the size and on the age and gender composition of asylum-related migration flows to Europe. With this paper, the authors contribute to the literature by looking at the impact of different political and environmental shocks on the gender and age composition of migration flows in addition to the size of these flows. Conflicting theories predict different outcomes concerning the relationship between political and environmental shocks and the migration flows composition. Analyzing the relationship between the causes of migration and the composition of migration flows could yield more insights into the mechanisms behind migration decisions. In addition, this research may contribute to better informing national authorities in charge of receiving these migrant, as women and children/the elderly require different assistance than young men. To be prepared to offer the correct services, the relevant institutions have to be aware of changes in composition based on the shock in question. The authors analyze the effect of different types of shocks on the number, the gender and age composition of first time asylum seekers originating from 154 sending countries. Among the political shocks, the authors consider: violence between combatants, violence against civilians, infringement of political rights and civil liberties, and state terror. Concerning environmental shocks, natural disasters (such as droughts, floods, epidemics, etc.) have been included. The data on asylum seekers applying to any of the 32 Schengen Area countries between 2008 and 2015 is on a monthly basis. Data on asylum applications come from Eurostat, data on shocks are retrieved from various sources: georeferenced conflict data come from the Uppsala Conflict Data Program (UCDP), data on natural disasters from the Centre for Research on the Epidemiology of Disasters (CRED), data on civil liberties and political rights from Freedom House, data on state terror from the Political Terror Scale (PTS), GDP and population data from the World Bank, and georeferenced population data from the Socioeconomic Data and Applications Center (SEDAC). The authors adopt a Difference-in-Differences identification strategy, exploiting the different timing of several kinds of shocks across countries. The highly skewed distribution of the dependent variable is taken into account by using count data models. In particular, a Zero Inflated Negative Binomial model is adopted. Preliminary results show that different shocks - such as armed conflict and epidemics - exert weak immediate effects on asylum-related migration flows and almost non-existent effects on the gender and age composition. However, this result is certainly affected by the fact that no time lags have been introduced so far. Finding the correct time lags depends on a great many variables not limited to distance alone. Therefore, finding the appropriate time lags is still a work in progress. Considering the ongoing refugee crisis, this topic is more important than ever. The authors hope that this research contributes to a less emotionally led debate.

Keywords: age, asylum, Europe, forced migration, gender

Procedia PDF Downloads 266