Search results for: efficient waste management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28666

Search results for: efficient waste management system

24616 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter

Authors: Mengmeng Liu, J. David Frost

Abstract:

Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.

Keywords: connectivity, interstate highway system, network analysis, resilience analysis

Procedia PDF Downloads 254
24615 Integrated Watershed Management Practice in Chelchai Hyrcanian Forests in the North of Iran

Authors: Mashad Maramaei, Behrooz Chogan, Reza Ahmadi

Abstract:

Human health and the health of his watershed are inseparable. This is because a watershed is an interconnected system of "land", "water", "air" and "life". Nowadays, most of the world's watersheds show symptoms of unhealthiness and require a prompt solution. It is believed that suitable solution is a participatory and Integrated Watershed Management (IWM). In recent decades the Hyrcanian forests in the north of Iran, which belongs to the end of the third geological era, are suffering from many environmental challenges such as land degradation, increasing trends of flood, drought and accelerated soil erosion. These challenges in the main forested area of the country impose many tangible and intangible damages and human losses. This is despite the fact that in the past decades, forestry programs, watershed management and other activities in the region have been implemented in a parallel and uncoordinated manner. Therefore, recently; the Natural Resources and Watershed Management Organization has resorted to the concept of IWM planning the Hyrcanian watersheds. The Chelchai watershed as mostly degraded watershed in the eastern part of the Hyrcanian forests has been selected as a pilot watershed for implementation of the IWM. It has a drainage area of 25680 hectares and receives an average annual precipitation of 650 mm. In this mountainous region, the average temperature is 17.3 degrees Celsius. About 34% of the watershed is under cultivation, 64% under forest cover, 2% under built up areas and etc. In this research, the effectiveness or ineffectiveness of the IWM model implementation of the Natural Resources and Watershed Management Organization has been evaluated based on questionnaire method and field studies. The results indicated that IWM activities in the study area should be reconsidered and revived. Based on this research and the lessons learned during five years' experience in the Chelchai watershed; authors believe that seven important tasks are necessary for socially acceptable and successful implementation of IWM projects. These are: 1) Establishment of Local Coordination Committee (LCC) at the watershed level 2) working for development of a IWM law among government organizations to organize watershed management and eliminate parallel and contradictory activities 3) More investment on education of local communities, especially women and children 4) Development of trust builder and pattern projects that showing best agricultural and livestock management activities at each of 26 villages 5) Assigning forest protection to local communities. 6) Capacity building of government stakeholders. 7) Helping in the marketing of watershed products.

Keywords: integrated watershed management, Chelchai, Hyrcanian forests, Iran

Procedia PDF Downloads 17
24614 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 98
24613 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 124
24612 Proposed Location of Grid Connected Wind-Pv Hybrid System Based on Load Flow and Voltage Stability Indices Study

Authors: Bazilah Ismail, Muhammad Mat Naain, Ibrahim Alhamrouni, Lilik Jamilatul Awalin, Fadi Albatsh, Mohd Fairuz Abdul Hamid

Abstract:

Rapid depletion and prices of the conventional energy sources have stimulated the development of the renewable energy source (RES). Due to the unpredicted and intermittent nature of RES, the hybrid renewable energy system (HRES) is the best solution to complement the nature of the respective sources, and the combination of the wind and solar energy is rapidly gaining popularity. The significant challenges on the operation and planning of the grid system with a high HRES penetration has become an important subject since the location of HRES plant give impact towards the existing system. This paper aims to propose the location of the grid connected Wind-PV hybrid plant (WPHP) based on load flow and voltage stability indices study. Several case studies are carried out using IEEE 14 bus system, and the system is modeled and tested in DigSILENT PowerFactory.

Keywords: hybrid renewable energy system, wind farm, photovoltaic system, voltage stability and load flow

Procedia PDF Downloads 311
24611 Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids

Authors: Dharamashi Rabari, Anand Patel

Abstract:

n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible.

Keywords: particle swarm optimization, isothermal sum rate method, success rate, extraction

Procedia PDF Downloads 118
24610 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 180
24609 Presentation of the Model of Reliability of the Signaling System with Emphasis on Determining Best Time Schedule for Repairments and Preventive Maintenance in the Iranian Railway

Authors: Maziar Yazdani, Ahmad Khodaee, Fatemeh Hajizadeh

Abstract:

The purpose of this research was analysis of the reliability of the signaling system in the railway and planning repair and maintenance of its subsystems. For this purpose, it will be endeavored to introduce practical strategies for activities control and appropriate planning for repair and preventive maintenance by statistical modeling of reliability. Therefore, modeling, evaluation, and promotion of reliability of the signaling system appear very critical. Among the key goals of the railway is provision of quality service for passengers and this purpose is gained by increasing reliability, availability, maintainability and safety of (RAMS). In this research, data were analyzed, and the reliability of the subsystems and entire system was calculated and with emphasis on preservation of performance of each of the subsystems with a reliability of 80%, a plan for repair and preventive maintenance of the subsystems of the signaling system was introduced.

Keywords: reliability, modeling reliability, plan for repair and preventive maintenance, signaling system

Procedia PDF Downloads 179
24608 A Route Guidance System for Car Finding in Indoor Parking Garages

Authors: Pei-Chun Lee, Sheng-Shih Wang

Abstract:

This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.

Keywords: guidance, iBeacon, mobile app, navigation

Procedia PDF Downloads 643
24607 Application of Strategic Management Tools

Authors: Abenezer Nigussie

Abstract:

Strategic control practice is a critical exercise, as it provides a sturdy influence towards firms or production partners to achieve the full implementation of effective predetermined plans. The importance of strategic control in a company is often measured by observing the relationship between strategic management and organizational performance. The conventional philosophy of strategic control in academia and the industry places significant emphasis on the ability to plan and execute initiatives. In contrast, the same emphasis on strategic management has received less attention in the housing industry. Although the pressures of project performance can often obscure the wider social, economic, and professional context in which strategic management is undertaken, it is these broad contextual areas that make strategic control a vital issue for construction businesses. Rapidly changing social and technological issues are creating an informed environment that will appear very different in the coming decades from what is experienced in today’s companies. Construction project activity is not adequately led by strategic management tools; projects are mostly executed through simple plans and schedules. The issues that this thesis addresses and solves involve the successful accompaniment of the construction project process through these strategic management tools. The second important aspect is an evaluation of project activity, which is mostly done through simple economic and technical valuation. However, during this research, effective strategic management tools are evaluated and suggested for the assessment of project activities. The research introduces a study of the current strategic management practices of construction companies and also presents the concept of strategic management and the areas that companies need to address to compete in the global market. A summary of an industry survey is documented along with the historical research that prompted the investigation of these topics with a focus on the implementation of tools. Strategic management is a concept that concerns making decisions and taking corrective actions to achieve the future goals and objectives of a company. The objective of this paper is to review the practice of strategic management in construction companies. Questionnaires were distributed to major construction companies listed under categories of each project capable of specifying the complete expression of strategic management tools. Findings of the research showed that the majority of development companies practice strategic management tools in the process and implementation of each tool.

Keywords: strategic management, management, analysis, project management

Procedia PDF Downloads 63
24606 Preparation vADL.net: A Software Architecture Tool with Support to All of Architectural Concepts Title

Authors: Adel Smeda, Badr Najep

Abstract:

Software architecture is a method of describing the architecture of a software system at a high level of abstraction. It represents a common abstraction of a system that stakeholders can use as a basis for mutual understanding, negotiation, consensus, and communication. It also manifests the earliest design decisions about a system, and these early bindings carry weight far out of proportion to their individual gravity with respect to the system's remaining development, its deployment, and its maintenance life, therefore it is the earliest point at which design decisions governing the system to be built can be analyzed. In this paper, we present a tool to model the architecture of software systems. It represents the first method by which system defects can be detected, and provide a clear representation of a system’s components and interactions at a high level of abstraction. It can be distinguished from other tools by its support to all software architecture elements. The tool is built using VB.net 2010. We used this tool to describe two well know systems, i.e. Capitalize and Client/Server, and the descriptions we obtained support all architectural elements of the two systems.

Keywords: software architecture, architecture description languages, modeling

Procedia PDF Downloads 463
24605 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System

Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray

Abstract:

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.

Keywords: back-propagation algorithm, load instability, neural network, power distribution system

Procedia PDF Downloads 431
24604 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 162
24603 A Mini Radar System for Low Altitude Targets Detection

Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan

Abstract:

This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.

Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)

Procedia PDF Downloads 318
24602 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 178
24601 Elasticity of Soil Fertility Indicators and pH in Termite Infested Cassava Field as Influenced by Tillage and Organic Manure Sources

Authors: K. O. Ogbedeh, T. T. Epidi, E. U. Onweremadu, E. E. Ihem

Abstract:

Apart from the devastating nature of termites as pest of cassava, nearly all termite species have been implicated in soil fertility modifications. Elasticity of soil fertility indicators and pH in termite infested cassava field as influenced by tillage and organic manure sources in Owerri, Southeast, Nigeria was investigated in this study. Three years of of field trials were conducted in 2007, 2008 and 2009 cropping seasons respectively at the Teaching and Research Farm of the Federal University of Technology, Owerri. The experiments were laid out in a 3x6 split-plot factorial arrangement fitted into a randomized complete block design (RCBD) with three replications. The TMS 4 (2)1425 was the cassava cultivar used. Treatments consists three tillage methods (zero, flat and mound), two rates of municipal waste (1.5 and 3.0tonnes/ha), two rates of Azadirachta indica (neem) leaves (20 and 30tonnes/ha), control (0.0 tonnes/ha) and a unit dose of carbofuran (chemical check). Data were collected on pre-planting soil physical and chemical properties, post-harvest soil pH (both in water and KCl) and residual total exchangeable bases (Ca, K, Mg and Na). These were analyzed using a Mixed-model procedure of Statistical Analysis Software (SAS). Means were separated using Least Significant Difference (LSD.) at 5% level of probability. Result shows that the native soil fertility status of the experimental site was poor. However soil pH increased substantially in plots where mounds, A.indica leaves at 30t/ha and municipal waste (1.5 and 3.0t/ha) were treated especially in 2008 and 2009. In 2007 trial, highest soil pH was maintained with flat (5.41 in water and 4.97 in KCl). Control on the other hand, recorded least soil pH especially in 2009 with values of 5.18 and 4.63 in water and KCl respectively. Equally, mound, A. indica leaves at 30t/ha and municipal waste at 3.0t/ha consistently increased organic matter content of the soil than other treatments. Finally, mound and A. indica leaves at 30t/ha linearly and consistently increased residual total exchangeable bases of the soil.

Keywords: elasticity, fertility, indicators, termites, tillage, cassava and manure sources

Procedia PDF Downloads 295
24600 Emotional Intelligence as a Correlate of Conflict Management Styles among Managers and Supervisors in Work Organizations in Nigeria

Authors: Solomon Ojo

Abstract:

The study investigated emotional intelligence as a correlate of conflict management styles among managers and supervisors in work organization. The study was a survey and Ex-post facto design was employed. A total of 407 participants took part in the study, and the participants were selected across different work organizations in the six (6) existing Geo-political zones in Nigeria, namely South-West, South East, South-South, North-East, North-West and North-Central. Questionnaire format was used for data collection in the study. Collected data were analyzed by both the Descriptive and Inferential Statistics, specifically using the Statistical Package for Social Sciences (SPSS) version 21.0. The findings revealed that considerate leadership style was significantly and positively related to the use of collaborating conflict management style, [r(405) = .50**, P < .01]; Considerate leadership style was significantly and positively related to the use of compromising conflict management style, [r(405) = .3**, P < .01]; Considerate leadership style was significantly and positively related to accommodation conflict management style, [r(405) = .64**, P < .01]; Considerate leadership style was not significantly related to competing conflict management style, [r(405) = .07, P > .05]; Considerate leadership style was significantly and negatively related to avoiding conflict management style, [r(405) = -.38**, P < .01]. Further, initiating structural leadership style was significantly and positively related to competing conflict management style, [r(405) = .33**, P < .01], avoiding conflict management style, [r(405) = .41**, P < .01]; collaborating conflict management style [r(405) = 51**, P < .01]. However, the findings showed that initiating structural leadership style was significantly and negatively related to compromising style, [r(405) = -.57**, P < .01] and accommodating style, [r(405) = -.13**, P < .01]. The findings were extensively discussed in relation to the existing body of literature. Moreover, it was concluded that leadership styles of managers and supervisors play a crucial role in the choice and use of conflict management styles in work organizations in Nigeria.

Keywords: conflict management style, emotional, intelligence, leadership style, consideration, initiating structure, work organizations

Procedia PDF Downloads 261
24599 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed

Procedia PDF Downloads 156
24598 Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery

Authors: Kathleen Frances Haigh, Mieke Nieder-Heitmann, Somayeh Farzad, Mohsen Ali Mandegari, Johann Ferdinand Gorgens

Abstract:

Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid.

Keywords: biorefineries, sugar mill, methanol, ethanol

Procedia PDF Downloads 193
24597 A Conceptual Framework for Managing Municipal Finances in South Africa

Authors: Abongile Zweni

Abstract:

As a post-apartheid strategy to redress the social imbalances of the past, local governments are tasked with the role of delivering crucial services to their constituents. Apart from political instability, evidence shows that managers in South African municipalities lack effective financial management skills and competencies. This resulted in a failure to fulfill its administrative obligations, particularly municipal financial management. Most municipalities have, however, failed in this role, which has led them to be placed under administration by the provincial government in terms of Section 139 of the constitution of the Republic of South Africa. Thus, this study proposed a leadership conceptual framework for effectively managing ever-eroding municipal finances in South Africa. The study adopted a desktop research approach to explore the key components of leadership and municipal financial management toward the development of the conceptual framework. The study fostered a better understanding of the need for transformation in relation to the current financial management practices and sustainability of a municipality. Moreover, the conceptual framework applies not only to municipalities but also to other government departments and public authorities in the country for financial management.

Keywords: leadership, municipal finance, financial performance, management skills, municipality

Procedia PDF Downloads 307
24596 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability

Procedia PDF Downloads 306
24595 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 60
24594 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 407
24593 Automatic Queuing Model Applications

Authors: Fahad Suleiman

Abstract:

Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.

Keywords: queuing systems, queuing system models, scheduling algorithms, patients

Procedia PDF Downloads 348
24592 Hydrophobically Modified Glycol Chitosan Nanoparticles as a Carrier for Etoposide

Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Javaid Irfan, Andreas G. Schätzlein, Ijeoma F Uchegbeu

Abstract:

Development of efficient delivery system for hydrophobic drugs remains a major concern in chemotherapy. The objective of the current study was to develop polymeric drug-delivery system for etoposide from amphiphilic derivatives of glycol chitosan, capable to improve the pharmacokinetics and to reduce the adverse effects of etoposide due to various organic solvents used in commercial formulations for solubilisation of etoposide. As a promising carrier, amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxy succinimide and quaternisation to glycol chitosan backbone. To this end a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternisation into 13 kDa. Nano sized micelles prepared from this amphiphilic polymer had the capability to encapsulate up to 3 mg/ml etoposide. The pharmacokinetic results indicated that GCPQ based etoposide formulation transformed the biodistribution pattern. AUC 0.5-24 hr showed statistically significant difference in ETP-GCPQ vs. commercial preparation in liver (25 vs 70, p<0.001), spleen (27 vs. 36, P<0.05), lungs (42 vs. 136, p<0.001), kidneys (25 vs. 30, p<0.05) and brain (19 vs. 9,p<0.001). Using the hydrophobic fluorescent dye Nile red, we showed that micelles efficiently delivered their payload to MCF7 and A2780 cancer cells in-vitro and to A431 xenograft tumor in-vivo, suggesting these systems could deliver hydrophobic anti- cancer drugs such as etoposide to tumors. The pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drug after intravenous administration. GCPQ based formulations not only reduced side effects associated with current available formulations but also increased their transport through the biological barriers, thus making it a good delivery system.

Keywords: glycol chitosan, Nile red, micelles, etoposide, A431 xenografts

Procedia PDF Downloads 305
24591 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 114
24590 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris

Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca

Abstract:

Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.

Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum

Procedia PDF Downloads 239
24589 Land Suitability Analysis for Rice Production in a Typical Watershed of Southwestern Nigeria: A Sustainability Pathway

Authors: Oluwagbenga O. Isaac Orimoogunje, Omolola Helen Oshosanya

Abstract:

The study examined land management in a typical watershed in southwestern Nigeria with a view to ascertaining its impact on land suitability analysis for rice cultivation and production. The study applied the analytical hierarchy process (AHP), weighted overlay analysis (WOA), multi-criteria decision-making techniques, and suitability map calculations within a Geographic Information System environment. Five main criteria were used, and these include climate, topography, soil fertility, macronutrients, and micronutrients. A consistency ratio (CR) of 0.067 was obtained for rice cultivation. The results showed that 95% of the land area is suitable for rice cultivation, with pH units ranging between 4.6 and 6.0, organic matter of 1.4–2.5 g kg-1 and base saturation of more than 80%. The study concluded that the Ofiki watershed is a potential site for large-scale rice cultivation in a sustainable capacity.

Keywords: land management, land characteristics, land suitability, rice production, watershed

Procedia PDF Downloads 72
24588 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 126
24587 Sustainable Development in Orthodontics: Orthodontic Archwire Waste

Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers

Abstract:

Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.

Keywords: archwire, orthodontics, sustainability, waste

Procedia PDF Downloads 187