Search results for: nano on-chip network
1869 Mourning Motivations for Celebrities in Instagram: A Case Study of Mohammadreza Shajarian's Death
Authors: Zahra Afshordi
Abstract:
Instagram, as an everyday life social network, hosts from the ultrasound image of an unborn fetus to the pictures of newly placed gravestones and funerals. It is a platform that allows its users to create a second identity independently from and at the same time in relation to the real space identity. The motives behind this identification are what this article is about. This article studies the motivations of Instagram users mourning for celebrities with a focus on the death of MohammadReza Shajarian. The Shajarian’s death had a wide reflection on Instagram Persian-speaking users. The purpose of this qualitative survey is to comprehend and study the user’s motivations in posting mourning and memorializing content. The methodology of the essay is a hybrid methodology consisting of content analysis and open-ended interviews. The results highlight that users' motives are more than just simple sympathy and include political protest, gaining cultural capital, reaching social status, and escaping from solitude.Keywords: case study, celebrity, identity, Instagram, mourning, qualitative survey
Procedia PDF Downloads 1621868 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 1451867 Quantifying Stability of Online Communities and Its Impact on Disinformation
Authors: Victor Chomel, Maziyar Panahi, David Chavalarias
Abstract:
Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time.Keywords: community analysis, disinformation, misinformation, Twitter
Procedia PDF Downloads 1461866 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 3501865 Accounting Management Information System for Convenient Shop in Bangkok Thailand
Authors: Anocha Rojanapanich
Abstract:
The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle
Procedia PDF Downloads 4231864 Degradation Model for UK Railway Drainage System
Authors: Yiqi Wu, Simon Tait, Andrew Nichols
Abstract:
Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.Keywords: deterioration, degradation, markov models, probability, railway drainage
Procedia PDF Downloads 2301863 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1581862 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel
Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid
Abstract:
This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity
Procedia PDF Downloads 1941861 A New Block Cipher for Resource-Constrained Internet of Things Devices
Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam
Abstract:
In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.Keywords: internet of things, cryptography block cipher, S-box, key management, security, network
Procedia PDF Downloads 1191860 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm
Authors: Khaled Ben Oualid Medani, Samir Sayah
Abstract:
The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm
Procedia PDF Downloads 1271859 Social Discussion Networks during the Covid-19 Pandemic: A Study of College Students Core Discussion Groups
Authors: Regan Harper, Song Yang, Douglas Adams
Abstract:
During the historically unprecedent time of Covid-19 pandemic, we survey college students with social issue generators to measure their core discussion groups. For the total 191 students, we elicit 847 conversation partners (alters) with our five social issue generators such as school closing, facemasks, collegiate sports, race and policing, and social inequality, producing an average of 4.43 alters per respondent. The core discussion groups of our sample are very gender balanced, with female alters slightly outnumbering male alters. However, the core discussion groups are racially homogenous, consisting of mostly white students (around or above 80 percent). Explanatory analyses reveal that gender and race of respondents significantly impact the size, gender composition, and racial composition of their core discussion networks. We discuss those major findings and implications of future studies in our conclusion section.Keywords: core discussion groups, social issue generators, ego-centric network, Covid-19 pandemic
Procedia PDF Downloads 951858 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 941857 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education
Authors: Yu Cheng-Yu
Abstract:
‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.Keywords: social construction, heterogeneity, new media, big data, visual culture art education
Procedia PDF Downloads 2531856 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis
Authors: Mhaned Oubounyt, Jan Baumbach
Abstract:
Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks
Procedia PDF Downloads 1621855 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 951854 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.Keywords: pressing, notch, matrix, flow function, vortex
Procedia PDF Downloads 2941853 Spectrum Assignment Algorithms in Optical Networks with Protection
Authors: Qusay Alghazali, Tibor Cinkler, Abdulhalim Fayad
Abstract:
In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time.Keywords: spectrum assignment, integer linear programming, greedy algorithm, international telecommunication union, library for efficient modeling and optimization in networks
Procedia PDF Downloads 1761852 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things
Authors: James Kaweesa
Abstract:
The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.Keywords: cyber-threats, iot, intrusion detection system, networks
Procedia PDF Downloads 841851 Knowledge Representation Based on Interval Type-2 CFCM Clustering
Authors: Lee Myung-Won, Kwak Keun-Chang
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation
Procedia PDF Downloads 3291850 Kauffman Model on a Network of Containers
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model.Keywords: agglomeration, autocatalytic set, differential equation, Kauffman model
Procedia PDF Downloads 621849 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis
Procedia PDF Downloads 1051848 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge
Authors: M. F. Yilmaz, B. Ö. Çağlayan
Abstract:
Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures
Procedia PDF Downloads 3641847 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel
Procedia PDF Downloads 4451846 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration
Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire
Abstract:
Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization
Procedia PDF Downloads 1631845 Embedded Hw-Sw Reconfigurable Techniques For Wireless Sensor Network Applications
Authors: B. Kirubakaran, C. Rajasekaran
Abstract:
Reconfigurable techniques are used in many engineering and industrial applications for the efficient data transmissions through the wireless sensor networks. Nowadays most of the industrial applications are work for try to minimize the size and cost. During runtime the reconfigurable technique avoid the unwanted hang and delay in the system performance. In recent world Field Programmable Gate Array (FPGA) as one of the most efficient reconfigurable device and widely used for most of the hardware and software reconfiguration applications. In this paper, the work deals with whatever going to make changes in the hardware and software during runtime it’s should not affect the current running process that’s the main objective of the paper our changes be done in a parallel manner at the same time concentrating the cost and power transmission problems during data trans-receiving. Analog sensor (Temperature) as an input for the controller (PIC) through that control the FPGA digital sensors in generalized manner.Keywords: field programmable gate array, peripheral interrupt controller, runtime reconfigurable techniques, wireless sensor networks
Procedia PDF Downloads 4131844 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge
Authors: L. M. Chinh
Abstract:
Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)
Procedia PDF Downloads 2431843 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1221842 The Study on the Platform Strategy of Taipei City Urban Regeneration Station
Authors: Chao Jen-Chih, Kuo-Wei Hsu
Abstract:
Many venues and spaces in cities gradually become old and decayed as time goes by and develops. Urban regeneration is the critical strategy to promote local development, but the method of spatial reconstruction which is emphasized in the issue of urban regeneration is questioned for bringing cultural, social and economic impacts on old city areas. The idea of “Urban Regeneration Station (URS)” is proposed for Taipei City Government to introduce the entry and disturbance of communities and related groups with the concept of creative city. This study explored how an URS promotes local development again through the strength of communities and the energy of local residence community, and it established the Platform Strategy for URS. The research results are as follows: URS through the promotion of government agencies, experts, scholars and the third sector, to the selection of different types of units stationed in business, through exhibitions, seminars, and other activities to explore local development issues, vetting each stationed execution efficiency units, and different units stationed by URS establish URS overall network platform strategy.Keywords: urban regeneration, platform strategy, creative city, Taipei city
Procedia PDF Downloads 4601841 Modelling the Choice of Global Systems of Mobile Networks in Nigeria Using the Analytical Hierarchy Process
Authors: Awal Liman Sale
Abstract:
The world is fast becoming a global village; and a necessary tool for this process is communication, of which telecommunication is a key player. The quantum development is very rapid as one innovation replaces another in a matter of weeks. Interconnected phone calls across the different Nigerian Telecom service providers are mostly difficult to connect and often diverted, incurring unnecessary charges on the customers. This compels the consumers to register and use multiple subscriber information modules (SIM) so that they can switch to another if one fails. This study aims to identify and prioritize the key factors in selecting telecom service providers by subscribers in Nigeria using the Analytical Hierarchy Process (AHP) in order to match the factors with the GSM network providers and create a hierarchical structure. Opinions of 400 random subscribers of different service providers will be sought using the questionnaire. In general, four components and ten sub-components will be examined in this study. After determining the weight of these components, the importance of each in choosing the service will be prioritized in Nigeria.Keywords: analytical hierarchy process, global village, Nigerian telecommunication, subscriber information modules
Procedia PDF Downloads 2511840 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 136