Search results for: fund flow
1117 Study on the Spatial Vitality of Waterfront Rail Transit Station Area: A Case Study of Main Urban Area in Chongqing
Authors: Lianxue Shi
Abstract:
Urban waterfront rail transit stations exert a dual impact on both the waterfront and the transit station, resulting in a concentration of development elements in the surrounding space. In order to more effectively develop the space around the station, this study focuses on the perspective of the integration of station, city, and people. Taking Chongqing as an example, based on the Arc GIS platform, it explores the vitality of the site from the three dimensions of crowd activity heat, space facilities heat, and spatial accessibility. It conducts a comprehensive evaluation and interpretation of the vitality surrounding the waterfront rail transit station area in Chongqing. The study found that (1) the spatial vitality in the vicinity of waterfront rail transit stations is correlated with the waterfront's functional zoning and the intensity of development. Stations situated in waterfront residential and public spaces are more likely to experience a convergence of people, whereas those located in waterfront industrial areas exhibit lower levels of vitality. (2) Effective transportation accessibility plays a pivotal role in maintaining a steady flow of passengers and facilitating their movement. However, the three-dimensionality of urban space in mountainous regions is a notable challenge, leading to some stations experiencing limited accessibility. This underscores the importance of enhancing the optimization of walking space, particularly the access routes from the station to the waterfront area. (3) The density of spatial facilities around waterfront stations in old urban areas lags behind the population's needs, indicating a need to strengthen the allocation of relevant land and resources in these areas.Keywords: rail transit station, waterfront, influence area, spatial vitality, urban vitality
Procedia PDF Downloads 341116 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method
Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere
Abstract:
The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.Keywords: finite element method, convection, buried cables, steady-state rating
Procedia PDF Downloads 1331115 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats
Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.Keywords: MDA, TBA, ciprofloxacin, HPLC-UV
Procedia PDF Downloads 3291114 Characterization of the State of Pollution by Nitrates in the Groundwater in Arid Zones Case of Eloued District (South-East of Algeria)
Authors: Zair Nadje, Attoui Badra, Miloudi Abdelmonem
Abstract:
This study aims to assess sensitivity to nitrate pollution and monitor the temporal evolution of nitrate contents in groundwater using statistical models and map their spatial distribution. The nitrate levels observed in the waters of the town of El-Oued differ from one aquifer to another. Indeed, the waters of the Quaternary aquifer are the richest in nitrates, with average annual contents varying from 6 mg/l to 85 mg/l, for an average of 37 mg/l. These levels are higher than the WHO standard (50 mg/l) for drinking water. At the water level of the Terminal Complex (CT) aquifer, the annual average nitrate levels vary from 14 mg/l to 37 mg/l, with an average of 18 mg/l. In the Terminal Complex, excessive nitrate levels are observed in the central localities of the study area. The spatial distribution of nitrates in the waters of the Quaternary aquifer shows that the majority of the catchment points of this aquifer are subject to nitrate pollution. This study shows that in the waters of the Terminal Complex aquifer, nitrate pollution evolves in two major areas. The first focus is South-North, following the direction of underground flow. The second is West-East, progressing towards the East zone. The temporal distribution of nitrate contents in the water of the Terminal Complex aquifer in the city of El-Oued showed that for decades, nitrate contents have suffered a decline after an increase. This evolution of nitrate levels is linked to demographic growth and the rapid urbanization of the city of El-Oued.Keywords: anthropogenic activities, groundwater, nitrates, pollution, arid zones city of El-Oued, Algeria
Procedia PDF Downloads 601113 Preliminary Flow Sheet for Recycling of Spent Lithium-Ion Batteries
Authors: Mohammad Ali Rajaeifar, Oliver Heidrich
Abstract:
Nowadays, Li-ion batteries are vastly disseminated and the battery market is expected to experience a huge growth during next decade especially in terms of traction batteries. As the automotive industry moving towards the electrification of the powertrain, more raw/critical materials and energy are extracted while on the other hand, concerns are made regarding the scarcity of the materials as well as environmental issues regarding the destiny of the spent batteries. In this regards, recycling could play a vital role in the supply chain, leading reutilization of key battery materials and also reducing environmental burden related to the use of batteries. The aim of this paper is to review the previous and state-of-the-art treatments for recycling of Li-ion batteries. All the treatments method from mechanical, mild-thermal, pyrometallurgical and hydrometallurgical as well as combined methods for recycling of Li-ion batteries were considered in the study. There are various treatment methods that are economical, but they are not environmentally friendly or vice versa. This is due to the fact that the benefits of the Li-ion batteries recycling could be affected by different factors such as the amount of spent batteries available, the quality of the recovered material, the energy and material consumption by the process itself and environmental burdens caused by required logistics. Finally, a preliminary work sheet of possible route for recycling of spent Li-ion batteries was presented through the course of this study. Overall, it is worth quoting that recycling processes generally consumes a great deal of energy and auxiliary materials. Moreover, the collection of spent products from waste streams represents additional environmental efforts. Therefore, developing and optimizing efficient collection and separation technologies is essential to achieve sustainability goals.Keywords: hydrometallurgical treatment, Li-ion batteries, mild-thermal treatment, mechanical treatment, recycling, pyrometallurgical treatment
Procedia PDF Downloads 1161112 Shallow Water Lidar System in Measuring Erosion Rate of Coarse-Grained Materials
Authors: Ghada S. Ellithy, John. W. Murphy, Maureen K. Corcoran
Abstract:
Erosion rate of soils during a levee or dam overtopping event is a major component in risk assessment evaluation of breach time and downstream consequences. The mechanism and evolution of dam or levee breach caused by overtopping erosion is a complicated process and difficult to measure during overflow due to accessibility and quickly changing conditions. In this paper, the results of a flume erosion tests are presented and discussed. The tests are conducted on a coarse-grained material with a median grain size D50 of 5 mm in a 1-m (3-ft) wide flume under varying flow rates. Each test is performed by compacting the soil mix r to its near optimum moisture and dry density as determined from standard Proctor test in a box embedded in the flume floor. The box measures 0.45 m wide x 1.2 m long x 0.25 m deep. The material is tested several times at varying hydraulic loading to determine the erosion rate after equal time intervals. The water depth, velocity are measured at each hydraulic loading, and the acting bed shear is calculated. A shallow water lidar (SWL) system was utilized to record the progress of soil erodibility and water depth along the scanned profiles of the tested box. SWL is a non-contact system that transmits laser pulses from above the water and records the time-delay between top and bottom reflections. Results from the SWL scans are compared with before and after manual measurements to determine the erosion rate of the soil mix and other erosion parameters.Keywords: coarse-grained materials, erosion rate, LIDAR system, soil erosion
Procedia PDF Downloads 1161111 A Mixed-Integer Nonlinear Program to Optimally Pace and Fuel Ultramarathons
Authors: Kristopher A. Pruitt, Justin M. Hill
Abstract:
The purpose of this research is to determine the pacing and nutrition strategies which minimize completion time and carbohydrate intake for athletes competing in ultramarathon races. The model formulation consists of a two-phase optimization. The first-phase mixed-integer nonlinear program (MINLP) determines the minimum completion time subject to the altitude, terrain, and distance of the race, as well as the mass and cardiovascular fitness of the athlete. The second-phase MINLP determines the minimum total carbohydrate intake required for the athlete to achieve the completion time prescribed by the first phase, subject to the flow of carbohydrates through the stomach, liver, and muscles. Consequently, the second phase model provides the optimal pacing and nutrition strategies for a particular athlete for each kilometer of a particular race. Validation of the model results over a wide range of athlete parameters against completion times for real competitive events suggests strong agreement. Additionally, the kilometer-by-kilometer pacing and nutrition strategies, the model prescribes for a particular athlete suggest unconventional approaches could result in lower completion times. Thus, the MINLP provides prescriptive guidance that athletes can leverage when developing pacing and nutrition strategies prior to competing in ultramarathon races. Given the highly-variable topographical characteristics common to many ultramarathon courses and the potential inexperience of many athletes with such courses, the model provides valuable insight to competitors who might otherwise fail to complete the event due to exhaustion or carbohydrate depletion.Keywords: nutrition, optimization, pacing, ultramarathons
Procedia PDF Downloads 1911110 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration
Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw
Abstract:
Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel
Procedia PDF Downloads 3521109 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir
Authors: Ahmad Fahim Nasiry, Shigeo Honma
Abstract:
We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding
Procedia PDF Downloads 3361108 Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes
Authors: Jia-Jia He, Lin Jiang, Jin-Hua Sun
Abstract:
Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology.Keywords: rigid polyurethane foam, cone calorimeter, ignition time, external heat flux
Procedia PDF Downloads 2191107 Applying Lean Six Sigma in an Emergency Department, of a Private Hospital
Authors: Sarah Al-Lumai, Fatima Al-Attar, Nour Jamal, Badria Al-Dabbous, Manal Abdulla
Abstract:
Today, many commonly used Industrial Engineering tools and techniques are being used in hospitals around the world for the goal of producing a more efficient and effective healthcare system. A common quality improvement methodology known as Lean Six-Sigma has been successful in manufacturing industries and recently in healthcare. The objective of our project is to use the Lean Six-Sigma methodology to reduce waiting time in the Emergency Department (ED), in a local private hospital. Furthermore, a comprehensive literature review was conducted to evaluate the success of Lean Six-Sigma in the ED. According to the study conducted by Ibn Sina Hospital, in Morocco, the most common problem that patients complain about is waiting time. To ensure patient satisfaction many hospitals such as North Shore University Hospital were able to reduce waiting time up to 37% by using Lean Six-Sigma. Other hospitals, such as John Hopkins’s medical center used Lean Six-Sigma successfully to enhance the overall patient flow that ultimately decreased waiting time. Furthermore, it was found that capacity constraints, such as staff shortages and lack of beds were one of the main reasons behind long waiting time. With the use of Lean Six-Sigma and bed management, hospitals like Memorial Hermann Southwest Hospital were able to reduce patient delays. Moreover, in order to successfully implement Lean Six-Sigma in our project, two common methodologies were considered, DMAIC and DMADV. After the assessment of both methodologies, it was found that DMAIC was a more suitable approach to our project because it is more concerned with improving an already existing process. With many of its successes, Lean Six-Sigma has its limitation especially in healthcare; but limitations can be minimized if properly approached.Keywords: lean six sigma, DMAIC, hospital, methodology
Procedia PDF Downloads 5001106 The Study of Spray Drying Process for Skimmed Coconut Milk
Authors: Jaruwan Duangchuen, Siwalak Pathaveerat
Abstract:
Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin
Procedia PDF Downloads 3391105 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations
Authors: Ahmed Alkarimi, Kevin Welham
Abstract:
Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.Keywords: LC separation, proteins separation, monolithic column, mixed mode
Procedia PDF Downloads 1671104 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites
Authors: S. Ghanaraja, Subrata Ray, S. K. Nath
Abstract:
Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.Keywords: aluminium, alumina, nano-particle reinforced composites, porosity
Procedia PDF Downloads 2531103 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet
Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu
Abstract:
Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet
Procedia PDF Downloads 2351102 Learning Communities and Collaborative Reflection for Teaching Improvement
Authors: Mariana Paz Sajon, Paula Cecilia Primogerio, Mariana Albarracin
Abstract:
This study recovers an experience of teacher training carried out in an Undergraduate Business School from a private university in Buenos Aires, Argentina. The purpose of the project was to provide teachers with an opportunity to reflect on their teaching practices at the university. The aim of the study is to systematize lessons and challenges that emerge from this teacher training experience. A group of teachers who showed a willingness to learn teaching abilities was selected to work. They completed a formative journey working in learning communities starting from the immersion in different aspects of teaching and learning, class observations, and an individual and collaborative reflection exercise in a systematic way among colleagues. In this study, the productions of the eight teachers who are members of the learning communities are analyzed, framed in an e-portfolio that they prepared during the training journey. The analysis shows that after the process of shared reflection, traits related to powerful teaching and meaningful learning have appeared in the classes. For their part, teachers reflect having reached an awareness of their own practices, identifying strengths and opportunities for improvement, and the experience of sharing their own way and knowing the successes and failures of others was valued. It is an educational journey of pedagogical transformation of the teachers, which is infrequent in business education, which could lead to a change in teaching practices for the entire Business School. The present study involves theoretical and pedagogic aspects of education in a business school in Argentina and its flow-on implications for the workplace that may be transferred to other educational contexts.Keywords: Argentina, learning community, meaningful learning, powerful teaching, reflective practice
Procedia PDF Downloads 2311101 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing
Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa
Abstract:
There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels
Procedia PDF Downloads 911100 Review the Concept of Context in Modernization of Rural Architecture Case Study: Baliran Village
Authors: Neda Najafi, Mehran Allalhesabi
Abstract:
At present, the natural, geographical, physical contexts of the rural textures, which play a crucial role in making the concept behind their body, are not considered in the new designs. Despite the fundamental differences in contexts, this issue has caused that, the new rural textures in our country become similar to each other and the cohesive structure of many villages in the development of rural areas are exposed to deterioration. The villages of northern Iran are not immune from this situation and nothing have remained from their physical characteristic, and the new sections of rural areas are designed heterogeneously and regardless to the concepts behind the region's architecture, which destroys the originality of the environment. The purpose of this study is to extract the concepts and criteria that differentiate the body of the village and reveal its similarity with the same structures. In this way, understanding the underlying values is extremely useful and is considered very important to approach the new model. In the first part, the subject matters of the research (context, village and rural architecture) are defined and then the characteristics of context-oriented rural architecture and criteria that can be examined from the perspective of contextualism approach are presented. In the second part, by selecting 3 samples from the houses of Baliran village, these concepts and criteria have been evaluated in the houses of the village. The results of this study show that the characteristics of contextual rural architecture have the ability to adapt to the body of the village and can be the best model to achieve contextual architecture in this area. Therefore, by using these concepts and criteria, it is possible to achieve a type of architecture that is located along with the past architecture and, with the help of the modern facilities and environmental potentials, creates a logical and correct flow in the physical development of the rural textures.Keywords: context, village, rural architecture, concepts and criteria of physical contextualism
Procedia PDF Downloads 1611099 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose
Authors: Md. Abdul Hannan
Abstract:
Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI
Procedia PDF Downloads 2721098 Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks
Authors: M. Asgari, N. Heydari, N. Shojai Kaveh, S. N. Ashrafizadeh
Abstract:
Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure.Keywords: alkaline, capillary, gravity, imbibition, surfactant, wettability
Procedia PDF Downloads 2361097 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation
Procedia PDF Downloads 1551096 Environmental Users’ Perceptions on Tourism in the Grangettes Nature Reserve, Switzerland
Authors: Ralph Lugon, Randolf Ramseyer
Abstract:
The beauty and quality of the natural heritage can be appreciated in different ways by different users, but the delicate balance of the environment in a nature reserve must be respected. The case of the territorial anchorage of the Grangettes natural reserve gives an interesting insight into the users' perception of the environmental constraints and standards of tourist activities. The nature reserve was once conceived as a sanctuary of natural heritage, a place where flora and fauna could flourish with minimal human interference. However, over time and with the transition to modernity, the values and meanings of the reserve have changed for visitors and the people living in the surrounding area. Today, The Grangettes nature reserve is a place of relaxation for urban dwellers with limited knowledge of nature and a lack of awareness of conservation issues. As a result, the reserve is now threatened by the negative impacts of human activities and mass tourism on its environment. Les Grangettes is a nature reserve that faces the challenge of preserving biodiversity while managing tourist flows. Ways must be found to accommodate new types of visitors from towns and cities who are looking for new activities, quality services and facilities, as well as aesthetic inspiration. To ensure the long-term conservation of the area, the flow of tourists must be carefully controlled. Through a dual qualitative-quantitative approach in 2021-22, this paper explores new visitor trends, changes in the reserve, and potential consequences for other stakeholders in the ecosystem. The purpose of this research is to assess users' perceptions of environmental constraints and standards on tourist activities in a nature reserve.Keywords: outdoor recreation, nature-based tourism, over tourism, protected area, user's perceptions
Procedia PDF Downloads 831095 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 311094 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention
Procedia PDF Downloads 1471093 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed
Authors: Tolulope Babawarun, Harry Ngwangwa
Abstract:
The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.Keywords: ANSYS, finite element analysis, static loading, dynamic analysis
Procedia PDF Downloads 921092 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells
Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard
Abstract:
Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics
Procedia PDF Downloads 2511091 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 2201090 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor
Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra
Abstract:
The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor
Procedia PDF Downloads 3431089 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh
Authors: Syeda Fahria Hoque Mimmi, Aparna Islam
Abstract:
Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements
Procedia PDF Downloads 1911088 Additive Manufacturing’s Impact on Product Design and Development: An Industrial Case Study
Authors: Ahmed Abdelsalam, Daniel Roozbahani, Marjan Alizadeh, Heikki Handroos
Abstract:
The aim of this study was to redesign a pressing air nozzle with lower weight and improved efficiency utilizing Selective Laser Melting (SLM) technology based on Design for Additive Manufacturing (DfAM) methods. The original pressing air nozzle was modified in SolidWorks 3D CAD, and two design concepts were introduced considering the DfAM approach. In the proposed designs, the air channels were amended. 3D models for the original pressing air nozzle and introduced designs were created to obtain the flow characteristic data using Ansys software. Results of CFD modeling for the original and two proposed designs were extracted, compared, and analyzed to demonstrate the impact of design on the development of a more efficient pressing air nozzle by AM process. Improved airflow was achieved by optimizing the pressing air nozzle's internal channel for both design concepts by providing 30% and 50.6% fewer pressure drops than the original design. Moreover, utilizing the presented designs, a significant reduction in product weight was attained. In addition, by applying the proposed designs, 48.3% and 70.3% reduction in product weight was attained compared to the original design. Therefore, pressing air nozzle with enhanced productivity and lowered weight was generated utilizing the DfAM-driven designs developed in this study. The main contribution of this study is to investigate the additional possibilities that can be achieved in designing modern parts using the advantage of SLM technology in producing that part. The approach presented in this study can be applied to almost any similar industrial application.Keywords: additive manufacturing, design for additive manufacturing, design methods, product design, pressing air nozzle
Procedia PDF Downloads 185